全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biophysics  2019 

长链非编码RNA RMRP RNA促成骨分化的研究进展
Research Advances of the Long Non-Coding RNA RMRP RNA Promoting the Osteoblastic Differentiation

DOI: 10.12677/BIPHY.2019.73005, PP. 49-56

Keywords: RMRP RNA,成骨发育,RNase MRP,RMRP-S1/2,底物
RMRP RNA
, Osteoblastic Differentiation, RNase MRP, RMRP-S1/2, Substrates

Full-Text   Cite this paper   Add to My Lib

Abstract:

RMRP RNA是一个长链非编码RNA。RMRP RNA不同位点的突变,包括转录区和调控区的突变会导致几种常染色体隐性的骨骼发育不良,其中之一是CHH。RMRP RNA可以通过形成核酸内切酶RNase MRP发挥功能,或者通过Dicer酶依赖途径产生2种microRNA,即RMRP-S1和RMRP-S2,调控细胞。与RMRP RNA研究相关最多的方面是关于癌症的发生,在成骨分化中研究很少。该综述从成骨发育过程,RNase MRP、RMRP-S1和RMRP-S2的底物与成骨发育的可能的关系几个方面进行阐述,为后续研究RMRP RNA在成骨发育中的分子机制提供一个参考。
RMRP RNA is a long non-coding RNA. Mutations in the different sites, including regulation regions and transcription regions, of RMRP RNA are sources of some autosomal recessive skeletal dysplasia. One of them is CHH. RMRP RNA can form a endonuclease RNase MRP to exert it’s function. Or it produce two microRNAs (RMRP-S1 and RMRP-S2) through the Dicer enzyme-dependent pathway to regulate cells. RMRP RNA is most involved in the research of cancer. It is farely understood that how RMRP RNA is engaged in the differentiation of osteoblast. In this review, we will state the process of osteoblast differentiation and the relationship between substrates of RNase MRP, RMRP-S1 and RMRP-S2 and the osteoblastic differentiation to promote the follow-up study of the molecular mechanism of RMRP RNA in the osteoblastic differentiation.

References

[1]  Steinbusch, M.M.F., Caron, M.M.J., Surtel, D.A.M., Friedrich, F., Lausch, E., Pruijn, G.J.M., Verhesen, W., Schroen, B.L.M., van Rhijn, L.W., Zabel, B. and Welting, T.J.M. (2017) Expression of RMRP RNA Is Regulated in Chondrocyte Hypertrophy and Determines Chondrogenic Differentiation. Scientific Reports, 7, Article No. 6440.
https://doi.org/10.1038/s41598-017-06809-5
[2]  Zhu, Y., Stribinskis, V., Ramos, K.S. and Li, Y. (2006) Se-quence Analysis of RNase MRP RNA Reveals Its Origination from Eukaryotic RNase P RNA. RNA, 12, 699-706.
https://doi.org/10.1261/rna.2284906
[3]  Welting, T.J., van Venrooij, W.J. and Pruijn, G.J. (2004) Mutual Inter-actions between Subunits of the Human RNase MRP Ribonucleoprotein Complex. Nucleic Acids Research, 32, 2138-2146.
https://doi.org/10.1093/nar/gkh539
[4]  Hermanns, P., Tran, A., Munivez, E., Carter, S., Zabel, B., Lee, B. and Leroy, J.G. (2006) RMRP Mutations in Cartilage-Hair Hypoplasia. American Journal of Medical Genetics. Part A, 140, 2121-2130.
https://doi.org/10.1002/ajmg.a.31331
[5]  Hermanns, P., Bertuch, A.A., Bertin, T.K., Dawson, B., Schmitt, M.E., Shaw, C., Zabel, B. and Lee, B. (2005) Consequences of Mutations in the Non-Coding RMRP RNA in Cartilage-Hair Hypoplasia. Human Molecular Genetics, 14, 3723-3740.
https://doi.org/10.1093/hmg/ddi403
[6]  Feng, W., Li, L., Xu, X., Jiao, Y. and Du, W. (2017) Up-Regulation of the Long Non-Coding RNA RMRP Contributes to Glioma Progression and Promotes Glioma Cell Proliferation and Invasion. Archives of Medical Science, 13, 1315-1321.
https://doi.org/10.5114/aoms.2017.66747
[7]  Provot, S. and Schipani, E. (2005) Molecular Mechanisms of Endochondral Bone Development. Biochemical and Biophysical Research Communications, 328, 658-665.
https://doi.org/10.1016/j.bbrc.2004.11.068
[8]  Mattijssen, S., Hinson, E.R., Onnekink, C., Hermanns, P., Zabel, B., Cresswell, P. and Pruijn, G.J. (2011) Viperin mRNA Is a Novel Target for the Human RNase MRP/RNase P Endoribonuclease. Cellular and Molecular Life Sciences, 68, 2469-2480.
https://doi.org/10.1007/s00018-010-0568-3
[9]  Gill, T., Cai, T., Aulds, J., Wierzbicki, S. and Schmitt, M.E. (2004) RNase MRP Cleaves the CLB2 mRNA to Promote Cell Cycle Progression: Novel Method of mRNA Degradation. Molecular and Cellular Biology, 24, 945-953.
https://doi.org/10.1128/MCB.24.3.945-953.2004
[10]  Welting, T.J., Kikkert, B.J., van Venrooij, W.J. and Pruijn, G.J. (2006) Differential Association of Protein Subunits with the Human RNase MRP and RNase P Complexes. RNA, 12, 1373-1382.
https://doi.org/10.1261/rna.2293906
[11]  Teng, T.S., Foo, S.S., Simamarta, D., Lum, F.M., Teo, T.H., Lulla, A., Yeo, N.K., Koh, E.G., Chow, A., Leo, Y.S., Merits, A., Chin, K.C. and Ng, L.F. (2012) Viperin Re-stricts Chikungunya Virus Replication and Pathology. The Journal of Clinical Investigation, 122, 4447-4460.
https://doi.org/10.1172/JCI63120
[12]  Joiner, D.M., Less, K.D., VanWieren, E. and Williams, B.O. (2013) Mice with Global Deletion of Mitogen Inducible Gene 6 Display Rapid and Severe Cartilage and Subchondral Bone Damage after Ligament and Meniscus Injury. Osteoarthritis and Cartilage, 21, S13-S14.
https://doi.org/10.1016/j.joca.2013.02.049
[13]  Galindo, M., Pratap, J., Young, D.W., Hovhannisyan, H., Im, H.J., Choi, J.Y., Lian, J.B., Stein, J.L., Stein, G.S. and van Wijnen, A.J. (2005) The Bone-Specific Expression of Runx2 Os-cillates during the Cell Cycle to Support a G1-Related Antiproliferative Function in Osteoblasts. The Journal of Bio-logical Chemistry, 280, 20274-20285.
https://doi.org/10.1074/jbc.M413665200
[14]  Yang, S., Zhang, L., Liu, M., Chong, R., Ding, S.J., Chen, Y. and Dong, J. (2013) CDK1 Phosphorylation of YAP Promotes Mitotic Defects and Cell Motility and Is Essential for Neo-plastic Transformation. Cancer Research, 73, 6722-6733.
https://doi.org/10.1158/0008-5472.CAN-13-2049
[15]  Rogler, L.E., Kosmyna, B., Moskowitz, D., Bebawee, R., Rahimzadeh, J., Kutchko, K., Laederach, A., Notarangelo, L. D., Giliani, S., Bouhassira, E., Frenette, P., Roy-Chowdhury, J. and Rogler, C.E. (2014) Small RNAs Derived from lncRNA RNase MRP Have Gene-Silencing Activity Relevant to Human Cartilage-Hair Hypoplasia. Human Molecular Genetics, 23, 368-382.
https://doi.org/10.1093/hmg/ddt427
[16]  Zaphiropoulos, P. (2011) PTCH2 (Patched Homolog 2 (Drosophila)). Atlas of Genetics and Cytogenetics in Oncology and Haematology.
https://doi.org/10.4267/2042/38598
[17]  Mak, K.K., Chen, M.H., Day, T.F., Chuang, P.T. and Yang, Y. (2006) Wnt/Beta-Catenin Signaling Interacts Differentially with Ihh Signaling in Controlling Endochondral Bone and Synovial Joint Formation. Development, 133, 3695-3707.
https://doi.org/10.1242/dev.02546
[18]  Yamashita, S., Andoh, M., Ueno-Kudoh, H., Sato, T., Miyaki, S. and Asahara, H. (2009) Sox9 Directly Promotes Bapx1 Gene Expression to Repress Runx2 in Chondrocytes. Experimental Cell Research, 315, 2231-2240.
https://doi.org/10.1016/j.yexcr.2009.03.008
[19]  Zhang, M., Xie, R., Hou, W., Wang, B., Shen, R., Wang, X., Wang, Q., Zhu, T., Jonason, J.H. and Chen, D. (2009) PTHrP Prevents Chondrocyte Premature Hypertrophy by Induc-ing Cyclin-D1-Dependent Runx2 and Runx3 Phosphorylation, Ubiquitylation and Proteasomal Degradation. Journal of Cell Science, 122, 1382-1389.
https://doi.org/10.1242/jcs.040709
[20]  Nissen-Meyer, L.S., Jemtland, R., Gautvik, V.T., Pedersen, M.E., Paro, R., Fortunati, D., Pierroz, D.D., Stadelmann, V.A., Reppe, S., Reinholt, F.P., Del Fattore, A., Rucci, N., Teti, A., Ferrari, S. and Gautvik, K.M. (2007) Osteopenia, Decreased Bone Formation and Impaired Osteoblast Development in Sox4 Heterozygous Mice. Journal of Cell Science, 120, 2785-2795.
https://doi.org/10.1242/jcs.003855

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133