全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

粉煤灰和再生粗骨料掺量对再生混凝土性能的影响研究
Research on the Influence of Amount of Fly Ash and Recycled Coarse Aggregate to the Performance of Recycled Concrete

DOI: 10.12677/HJCE.2019.87131, PP. 1125-1132

Keywords: 再生粗骨料,粉煤灰,抗压强度,抗冻性能,XRD
Recycled Coarse Aggregate
, Fly Ash, Compressive Strength, Frost Resistance, XRD

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了两种再生粗骨料取代率(80%和100%),三种粉煤灰掺量(0%,15%和30%)对再生混凝土抗压强度和抗冻性能的影响,测试了其抗压强度和质量损失率,并且通过XRD对其微观结构进行了试验分析。试验结果表明:1) 再生混凝土的抗压强度随粉煤灰掺量的增加呈现出先增后减的趋势,粉煤灰掺量为15%,再生粗骨料取代率为80%时,试件的28天抗压强度最高;2) 75次冻融循环后,所有试件的质量损失率均小于5%,粉煤灰掺量和再生粗骨料取代率为15%和100%时,试件质量损失率最低;3) 再生粗骨料的增多会导致再生混凝土内部结构缺陷的增多,而适量的粉煤灰可以有效改善这些缺陷。
The effects of two kinds of recycled coarse aggregate replacement rates (80% and 100%) and three fly ash additions (0%, 15% and 30%) on the compressive strength and frost resistance to recycled concrete were researched and tested its compressive strength and mass loss rate. Simultaneously, the microstructure of the recycled concrete was tested by XRD. The results indicated that: 1) The compressive strength of recycled concrete showed a trend of increasing first and then decreasing with the raise of fly ash amount. When the fly ash content was 15% and the recycled coarse aggregate replacement rate was 80%, the 28-day compressive strength of specimens highest. 2) After 75 freeze-thaw cycles, the mass loss rate of all specimens was less than 5%. When the fly ash amount and the recycled coarse aggregate substitution rate were 15% and 100%, the mass loss rate of specimens was the lowest. 3) The increase in recycled coarse aggregate resulted in a raise in the internal structural defects of recycled concrete, and an appropriate amount of fly ash can effectively improve these defects.

References

[1]  Hansen, T.C. (1986) Recycled Aggregates and Recycled Aggregate Concrete Second State-of-the-Art Report Devel-opments 1945-1985. Materials and Structures, 19, 201-246.
https://doi.org/10.1007/BF02472036
[2]  吴从亮, 高燕, 谢国栋. 再生粗骨料的研究与应用概述[J]. 混凝土世界, 2017(11): 54-57.
[3]  范小平. 废弃混凝土再生利用技术及其研究现状[J]. 建筑技术开发, 2013, 40(5): 88-90.
[4]  周宏敏, 柴俊, 柴华, 等. 再生骨料混凝土技术及其研究现状[J]. 混凝土, 2008, 30(12): 75-76.
[5]  肖建庄. 再生混凝土[M]. 北京: 中国建筑工业出版社, 2008.
[6]  王军强, 陈年和, 蒲琪. 再生混凝土强度和耐久性能试验[J]. 混凝土, 2007(5): 53-56.
[7]  唐春平, 廖亮. 绿色再生混凝土利用途径与评定思路[J]. 山西建筑, 2004, 30(22): 83-84.
[8]  史美东. 绿色混凝土的发展与应用[J]. 特种结构, 2004, 21(4): 80-82.
[9]  徐卓, 龙帮云. 开发利用再生混凝土走可持续发展的道路[J]. 中外建筑, 2004(2): 197-199.
[10]  周万良, 龙靖华, 詹炳根. 熟料-无水石膏系统与粉煤灰-石灰-无水石膏系统的水化物[J]. 硅酸盐通报, 2009, 28(3): 558-562.
[11]  李金玉, 彭小平, 邓正刚, 等. 混凝土抗冻性的定量化设计[J]. 混凝土, 2000(9): 61-65.
[12]  Tabsh, S.W. and Abdelfatah, A.S. (2009) Influence of Recycled Concrete Aggregates on Strength Properties of Concrete. Construction & Building Materials, 23, 1163-1167.
https://doi.org/10.1016/j.conbuildmat.2008.06.007
[13]  Limbachiya, M.C., Leelawat, T. and Dhir, R.K. (2000) Use of Recycled Concrete Aggregate in High-Strength Concrete. Materials and Structures, 33, 574-580.
https://doi.org/10.1007/BF02480538
[14]  Sumer, M. (2012) Compressive Strength and Sulfate Resistance Prop-erties of Concretes Containing Class F and Class C Fly Ashes. Construction & Building Materials, 34, 531-536.
https://doi.org/10.1016/j.conbuildmat.2012.02.023
[15]  王晨霞, 张杰, 曹芙波. 粉煤灰掺量对再生混凝土力学性能和抗冻性的影响研究[J]. 硅酸盐通报, 2017, 36(11): 3778-3783+3809.
[16]  Siddique, R. (2004) Performance Characteristics of High-Volume Class F Fly Ash Concrete. Cement & Concrete Research, 34, 487-493.
https://doi.org/10.1016/j.cemconres.2003.09.002
[17]  Nonavinakere, S. and Reed, B.E. (1995) Fly Ash Enhanced Metal Removal Process. In: Sengupta, A.K., Ed., Hazardous and Industrial Wastes, Proceedings of the 27th Mid-Atlantic Industrial Waste Conference, Technomart Publishing, Sydney, 588-594.
[18]  胡琼, 宋灿, 邹超英. 再生混凝土力学性能试验[J]. 哈尔滨工业大学报, 2009, 41(4): 33-36.
[19]  汤文秀. 再生混凝土的力学性能及微观形貌分析[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2015.
[20]  伍君勇, 朱平华. 再生混凝土抗冻性研究进展[J]. 混凝土, 2013(4): 15-19.
[21]  Kolay, P.K., Sulaiman, S., Kumar, S., et al. (2017) Freeze-Thaw Durability of Air-Entrained Concrete Incorporating Natural and Recycled Concrete Aggregate Mixtures. In: International Congress and Exhibition Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology, Springer, Cham, 185-196.
https://doi.org/10.1007/978-3-319-61633-9_11
[22]  Hansen, T.C. and Narud, H. (1983) Strength of Recycled Concrete Made from Crushed Concrete Coarse Aggregate. Concrete International, 5, 79-83.
[23]  Li, X. (2008) Recy-cling and Reuse of Waste Concrete in China: Part I. Material Behaviour of Recycled Aggregate Concrete. Resources, Conservation and Recycling, 53, 36-44.
https://doi.org/10.1016/j.resconrec.2008.09.006
[24]  谢静静, 朱平华. 基于抗冻性的混凝土再生粗骨料最优取代率试验研究[J]. 建筑结构, 2016, 46(2): 35-38.
[25]  崔正龙, 北迁政文, 田中礼治. 再生混凝土的冻融循环试验研究[J]. 建筑材料学报, 2007, 10(5): 534-537.
[26]  Saha, A.K. and Sarker, P.K. (2017) Sustainable Use of Ferronickel Slag Fine Aggregate and Fly Ash in Structural Concrete: Mechanical Prop-erties and Leaching Study. Journal of Cleaner Production, 162, 438-448.
https://doi.org/10.1016/j.jclepro.2017.06.035

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133