全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用于抗肿瘤药物递送的刺激敏感型聚合物载体的研究进展
Research Progress of Stimuli-Sensitive Polymer Carriers for Anti-Tumor Drug Delivery

DOI: 10.12677/JAPC.2019.84008, PP. 65-73

Keywords: 刺激敏感型聚合物纳米载体,pH敏感,氧化还原敏感,低氧敏感,光敏感,超声波敏感,多重刺激响应
Stimulating Sensitive Polymer Nanocarriers
, pH Sensitive, Redox Sensitive, Hypoxic Sensitive, Light Sensitive, Ultrasonic Sensitive, Multiple Stimuli Response

Full-Text   Cite this paper   Add to My Lib

Abstract:

刺激敏感型聚合物纳米载体由于在药物递送和药物的智能控释方面具有良好的应用前景,受到了广大研究人员的广泛关注。其种类包括响应内源刺激的pH敏感聚合物载体、氧化还原敏感聚合物载体和低氧敏感聚合物载体,响应外源刺激的光敏感聚合物载体和超声波敏感聚合物载体。本文主要综述不同刺激敏感型聚合物载体和多重刺激响应聚合物载体的研究进展,激励未来的研究人员设计和合成新型刺激响应聚合物载体,以便实现更加高效的药物递送和智能控释的效果。
Stimuli-sensitive polymer nanocarriers have attracted much attention from researchers because of their good application prospects in drug delivery and intelligent controlled release of drugs. They consist of pH sensitive polymer carriers, redox sensitive polymer carriers, hypoxic sensitive polymeric carriers, light sensitive polymeric carriers and ultrasonically sensitive polymeric carriers. This article reviews the research progress of different stimuli-sensitive polymer carriers and multiple stimuli-responsive polymer carriers, and encourages future researchers to design and synthesize novel stimuli-responsive polymer carriers for more efficient drug delivery and in-telligent controlled release.

References

[1]  Yang, H.Y., Jang, M.-S., Gao, G.H., Lee, J.H. and Lee, D.S. (2016) Construction of Redox/pH Dual Stimuli-Responsive Pegylated Polymeric Micelles for Intracellular Doxorubicin Delivery in Liver Cancer. Polymer Chemistry, 7, 1813-1825.
https://doi.org/10.1039/C5PY01808K
[2]  Du, J., Lane, L.A. and Nie, S. (2015) Stimuli-Responsive Nanoparticles for Targeting the Tumor Microenvironment. Journal of Controlled Release, 219, 205-214.
https://doi.org/10.1016/j.jconrel.2015.08.050
[3]  Wang, S., Huang, P. and Chen, X. (2016) Stimuli-Responsive Programmed Specific Targeting in Nanomedicine. ACS Nano, 10, 2991-2994.
https://doi.org/10.1021/acsnano.6b00870
[4]  Shim, M.S. and Kwon, Y.J. (2012) Stimuli-Responsive Polymers and Nanomaterials for Gene Delivery and Imaging Applications. Advanced Drug Delivery Reviews, 64, 1046-1059.
https://doi.org/10.1016/j.addr.2012.01.018
[5]  Tayo, L.L. (2017) Stimuli-Responsive Na-nocarriers for Intracellular Delivery. Biophysical Reviews, 9, 931-940.
https://doi.org/10.1007/s12551-017-0341-z
[6]  Engin, K., Leeper, D., Cater, J., et al. (1995) Extracellular pH Distribution in Human Tumours. International Journal of Hyperthermia, 11, 211-216.
https://doi.org/10.3109/02656739509022457
[7]  Yu, P., Yu, H., Guo, C., et al. (2015) Reversal of Doxorubicin Resistance in Breast Cancer by Mitochondria-Targeted pH-Responsive Micelles. Acta Biomaterialia, 14, 115-124.
https://doi.org/10.1016/j.actbio.2014.12.001
[8]  Kocak, G., Tuncer, C. and Bütün, V. (2017) pH-Responsive Polymers. Polymer Chemistry, 8, 144-176.
https://doi.org/10.1039/C6PY01872F
[9]  Mao, J., Li, Y., Wu, T., et al. (2016) A Simple Dual-PH Responsive Prodrug-Based Polymeric Micelles for Drug Delivery. ACS Applied Materials & Interfaces, 8, 17109-17117.
https://doi.org/10.1021/acsami.6b04247
[10]  Aryal, S., Hu, C. and Zhang, L. (2009) Polymer-Cisplatin Conjugate Nanoparticles for Acid-Responsive Drug Delivery. ACS Nano, 4, 251-258.
https://doi.org/10.1021/nn9014032
[11]  Shen, Y., Jin, E., Zhang, B., et al. (2010) Prodrugs Forming High Drug Loading Multifunctional Nanocapsules for Intracellular Cancer Drug Delivery. Journal of the American Chemical Society, 132, 4259-4265.
https://doi.org/10.1021/ja909475m
[12]  Mackay, J.A., Chen, M., McDaniel, J.R., et al. (2009) Self-Assembling Chimeric Po-lypeptide-Doxorubicin Conjugate Nanoparticles that Abolish Tumours after a Single Injection. Nature Materials, 8, 993-999.
https://doi.org/10.1038/nmat2569
[13]  Li, J., Zhang, L., Lin, Y., et al. (2016) A pH-Sensitive Prodrug Micelle Self-Assembled from Multi-Doxorubicin-Tailed Polyethylene Glycol for Cancer Therapy. RSC Advances, 6, 9160-9163.
https://doi.org/10.1039/C5RA27293A
[14]  Tian, H., Tang, Z., Zhuang, X., Chen, X. and Jing, X. (2012) Biodegradable Syn-thetic Polymers: Preparation, Functionalization and Biomedical Application. Progress in Polymer Science, 37, 237-280.
https://doi.org/10.1016/j.progpolymsci.2011.06.004
[15]  Wu, G., Fang, Y., Yang, S., Lupton, J.R. and Turner, N.D. (2004) Glutathione Metabolism and Its Implications for Health. The Journal of Nutrition, 134, 489-492.
https://doi.org/10.1093/jn/134.3.489
[16]  Aluri, S., Janib, S.M. and Mackay, J.A. (2009) Environmentally Responsive Peptides as Anticancer Drug Carriers. Advnced Drug Delivery Reviews, 61, 940-952.
https://doi.org/10.1016/j.addr.2009.07.002
[17]  Xia, J., Du, Y., Huang, L., et al. (2018) Redox-Responsive Micelles from Disulfide Bond-Bridged Hyaluronic Acid-Tocopherol Succinate for the Treatment of Melanoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 14, 713-723.
https://doi.org/10.1016/j.nano.2017.12.017
[18]  Zhang, Y., Guo, Z., Cao, Z., et al. (2018) Endogenous Albumin-Mediated Delivery of Redox-Responsive Paclitaxel-Loaded Micelles for Targeted Cancer Therapy. Biomaterials, 183, 243-257.
https://doi.org/10.1016/j.biomaterials.2018.06.002
[19]  Sun, C., Li, X., Du, X. and Wang, T. (2018) Redox-Responsive Micelles for Triggered Drug Delivery and Effective Laryngopharyngeal Cancer Therapy. International Journal of Biological Macromolecules, 112, 65-73.
https://doi.org/10.1016/j.ijbiomac.2018.01.136
[20]  Maiti, C., Parida, S., Kayal, S., et al. (2018) Redox-Responsive Core-Cross-Linked Block Copolymer Micelles for Overcoming Multidrug Resistance in Cancer Cells. ACS Applied Materials & Interfaces, 10, 5318-5330.
https://doi.org/10.1021/acsami.7b18245
[21]  Liu, B., Tan, L., He, C., et al. (2018) Redox-Responsive Micelles Self-Assembled from Multi-Block Copolymer for Co-Delivery of Sirna and Hydrophobic Anticancer Drug. Polymer Bulletin, 76, 4237-4257.
https://doi.org/10.1007/s00289-018-2600-y
[22]  Chen, W., Yuan, Y., Cheng, D., et al. (2014) Co-Delivery of Doxorubicin and siRNA with Reduction and pH Dually Sensitive Nanocarrier for Synergistic Cancer Therapy. Small, 10, 2678-2687.
https://doi.org/10.1002/smll.201303951
[23]  Qian, C., Yu, J., Chen, Y., et al. (2016) Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy. Advanced Materials, 28, 3313-3320.
https://doi.org/10.1002/adma.201505869
[24]  Zeng, Y., Ma, J., Zhan, Y., et al. (2018) Hypoxia-Activated Prodrugs and Re-dox-Responsive Nanocarriers. International Journal of Nanomedicine, 13, 6551-6574.
https://doi.org/10.2147/IJN.S173431
[25]  Kizaka-Kondoh, S., Inoue, M., Harada, H. and Hiraoka, M. (2003) Tumor Hypoxia: A Target for Selective Cancer Therapy. Cancer Science, 94, 1021-1028.
https://doi.org/10.1111/j.1349-7006.2003.tb01395.x
[26]  Liu, J.N., Bu, W. and Shi, J. (2017) Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chemical Reviews, 117, 6160-6224.
https://doi.org/10.1021/acs.chemrev.6b00525
[27]  Thambi, T., Deepagan, V.G., Yoon, H.Y., et al. (2014) Hypoxia-Responsive Polymeric Nanoparticles for Tumor-Targeted Drug Delivery. Biomaterials, 35, 1735-1743.
https://doi.org/10.1016/j.biomaterials.2013.11.022
[28]  Piao, W., Tsuda, S., Tanaka, Y., et al. (2013) Development of Azo-Based Fluorescent Probes to Detect Different Levels of Hypoxia. Angewandte Chemie International Edition, 52, 13028-13032.
https://doi.org/10.1002/anie.201305784
[29]  Babin, J., Pelletier, M., Lepage, M., et al. (2009) A New Two-Photon-Sensitive Block Copolymer Nanocarrier. Angewandte Chemie International Edition, 48, 3329-3332.
https://doi.org/10.1002/anie.200900255
[30]  Fomina, N., Sankaranarayanan, J. and Almutairi, A. (2012) Photochemical Me-chanisms of Light-Triggered Release from Nanocarriers. Advanced Drug Delivery Reviews, 64, 1005-1020.
https://doi.org/10.1016/j.addr.2012.02.006
[31]  Zhao, Y. (2012) Light-Responsive Block Copolymer Micelles. Macromolecules, 45, 3647-3657.
https://doi.org/10.1021/ma300094t
[32]  Baghbani, F. and Moztarzadeh, F. (2017) Bypassing Multidrug Resistant Ovarian Cancer Using Ultrasound Responsive Doxorubicin/Curcumin Co-Deliver Alginate Nanodroplets. Colloids and Surfaces B: Biointer-faces, 153, 132-140.
https://doi.org/10.1016/j.colsurfb.2017.01.051
[33]  Baghbani, F., Chegeni, M., Moztarzadeh, F., Hadian-Ghazvini, S. and Raz, M. (2017) Novel Ultrasound-Responsive Chitosan/Perfluorohexane Nanodroplets for Image-Guided Smart Delivery of an Anticancer Agent: Curcumin. Materials Science and Engineering: C, 74, 186-193.
https://doi.org/10.1016/j.msec.2016.11.107
[34]  Wang, P., Yin, T., Li, J., et al. (2016) Ultrasound-Responsive Microbubbles for Sonography-Guided siRNA Delivery. Nanomedicine: Na-notechnology, Biology and Medicine, 12, 1139-1149.
https://doi.org/10.1016/j.nano.2015.12.361
[35]  Alex, M.R.A., Nehate, C., Veeranarayanan, S., et al. (2017) Self Assembled Dual Responsive Micelles Stabilized with Protein for Co-Delivery of Drug and siRNA in Cancer Therapy. Biomaterials, 133, 94-106.
https://doi.org/10.1016/j.biomaterials.2017.04.022
[36]  Teo, J.Y., Chin, W., Ke, X., et al. (2017) pH and Redox Dual-Responsive Biodegradable Polymeric Micelles with High Drug Loading for Effective Anticancer Drug Delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 431-442.
https://doi.org/10.1016/j.nano.2016.09.016
[37]  Zhuang, W., Xu, Y., Li, G., et al. (2018) Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ACS Applied Materials & Interfaces, 10, 18489-18498.
https://doi.org/10.1021/acsami.8b02890
[38]  Yu, H., Cui, Z., Yu, P., et al. (2015) pH-and NIR Light-Responsive Micelles with Hyperthermia-Triggered Tumor Penetration and Cytoplasm Drug Release to Reverse Doxorubicin Resistance in Breast Cancer. Advanced Functional Materials, 25, 2489-2500.
https://doi.org/10.1002/adfm.201404484
[39]  Xu, X., Li, L., Zhou, Z., Sun, W. and Huang, Y. (2016) Dual-pH Responsive Micelle Platform for Co-Delivery of Axitinib and Doxorubicin. International Journal of Pharmaceutics, 507, 50-60.
https://doi.org/10.1016/j.ijpharm.2016.04.060
[40]  Wang, Y., Luo, Q., Zhu, W., et al. (2016) Reduction/pH Dual-Responsive Nano-Prodrug Micelles for Controlled Drug Delivery. Polymer Chemistry, 7, 2665-2673.
https://doi.org/10.1039/C6PY00168H
[41]  Sang, M.M., Liu, F.L., Wang, Y., et al. (2018) A Novel Redox/pH Dual-Responsive and Hyaluronic Acid-Decorated Multifunctional Magnetic Complex Micelle for Targeted Gambogic Acid Delivery for the Treatment of Triple Negative Breast Cancer. Drug Delivery, 25, 1846-1857.
https://doi.org/10.1080/10717544.2018.1486472
[42]  Li, J., Yu, X., Wang, Y., et al. (2014) A Reduction and pH Dual-Sensitive Polymeric Vector for Long-Circulating and Tumor-Targeted Sirna Delivery. Advanced Materials, 26, 8217-8224.
https://doi.org/10.1002/adma.201403877
[43]  Yang, H.Y., Jang, M.-S., Gao, G.H., Lee, J.H. and Lee, D.S. (2016) Construction of Redox/pH Dual Stimuli-Responsive Pegylated Polymeric Micelles for Intracellular Doxorubicin Delivery in Liver Cancer. Polymer Chemistry, 7, 1813-1825.
https://doi.org/10.1039/C5PY01808K
[44]  Du, J., Lane, L.A. and Nie, S. (2015) Stimuli-Responsive Nanoparticles for Targeting the Tumor Microenvironment. Journal of Controlled Release, 219, 205-214.
https://doi.org/10.1016/j.jconrel.2015.08.050
[45]  Wang, S., Huang, P. and Chen, X. (2016) Stimuli-Responsive Programmed Specific Targeting in Nanomedicine. ACS Nano, 10, 2991-2994.
https://doi.org/10.1021/acsnano.6b00870
[46]  Shim, M.S. and Kwon, Y.J. (2012) Stimuli-Responsive Polymers and Nanomaterials for Gene Delivery and Imaging Applications. Advanced Drug Delivery Reviews, 64, 1046-1059.
https://doi.org/10.1016/j.addr.2012.01.018
[47]  Tayo, L.L. (2017) Stimuli-Responsive Na-nocarriers for Intracellular Delivery. Biophysical Reviews, 9, 931-940.
https://doi.org/10.1007/s12551-017-0341-z
[48]  Engin, K., Leeper, D., Cater, J., et al. (1995) Extracellular pH Distribution in Human Tumours. International Journal of Hyperthermia, 11, 211-216.
https://doi.org/10.3109/02656739509022457
[49]  Yu, P., Yu, H., Guo, C., et al. (2015) Reversal of Doxorubicin Resistance in Breast Cancer by Mitochondria-Targeted pH-Responsive Micelles. Acta Biomaterialia, 14, 115-124.
https://doi.org/10.1016/j.actbio.2014.12.001
[50]  Kocak, G., Tuncer, C. and Bütün, V. (2017) pH-Responsive Polymers. Polymer Chemistry, 8, 144-176.
https://doi.org/10.1039/C6PY01872F
[51]  Mao, J., Li, Y., Wu, T., et al. (2016) A Simple Dual-PH Responsive Prodrug-Based Polymeric Micelles for Drug Delivery. ACS Applied Materials & Interfaces, 8, 17109-17117.
https://doi.org/10.1021/acsami.6b04247
[52]  Aryal, S., Hu, C. and Zhang, L. (2009) Polymer-Cisplatin Conjugate Nanoparticles for Acid-Responsive Drug Delivery. ACS Nano, 4, 251-258.
https://doi.org/10.1021/nn9014032
[53]  Shen, Y., Jin, E., Zhang, B., et al. (2010) Prodrugs Forming High Drug Loading Multifunctional Nanocapsules for Intracellular Cancer Drug Delivery. Journal of the American Chemical Society, 132, 4259-4265.
https://doi.org/10.1021/ja909475m
[54]  Mackay, J.A., Chen, M., McDaniel, J.R., et al. (2009) Self-Assembling Chimeric Po-lypeptide-Doxorubicin Conjugate Nanoparticles that Abolish Tumours after a Single Injection. Nature Materials, 8, 993-999.
https://doi.org/10.1038/nmat2569
[55]  Li, J., Zhang, L., Lin, Y., et al. (2016) A pH-Sensitive Prodrug Micelle Self-Assembled from Multi-Doxorubicin-Tailed Polyethylene Glycol for Cancer Therapy. RSC Advances, 6, 9160-9163.
https://doi.org/10.1039/C5RA27293A
[56]  Tian, H., Tang, Z., Zhuang, X., Chen, X. and Jing, X. (2012) Biodegradable Syn-thetic Polymers: Preparation, Functionalization and Biomedical Application. Progress in Polymer Science, 37, 237-280.
https://doi.org/10.1016/j.progpolymsci.2011.06.004
[57]  Wu, G., Fang, Y., Yang, S., Lupton, J.R. and Turner, N.D. (2004) Glutathione Metabolism and Its Implications for Health. The Journal of Nutrition, 134, 489-492.
https://doi.org/10.1093/jn/134.3.489
[58]  Aluri, S., Janib, S.M. and Mackay, J.A. (2009) Environmentally Responsive Peptides as Anticancer Drug Carriers. Advnced Drug Delivery Reviews, 61, 940-952.
https://doi.org/10.1016/j.addr.2009.07.002
[59]  Xia, J., Du, Y., Huang, L., et al. (2018) Redox-Responsive Micelles from Disulfide Bond-Bridged Hyaluronic Acid-Tocopherol Succinate for the Treatment of Melanoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 14, 713-723.
https://doi.org/10.1016/j.nano.2017.12.017
[60]  Zhang, Y., Guo, Z., Cao, Z., et al. (2018) Endogenous Albumin-Mediated Delivery of Redox-Responsive Paclitaxel-Loaded Micelles for Targeted Cancer Therapy. Biomaterials, 183, 243-257.
https://doi.org/10.1016/j.biomaterials.2018.06.002
[61]  Sun, C., Li, X., Du, X. and Wang, T. (2018) Redox-Responsive Micelles for Triggered Drug Delivery and Effective Laryngopharyngeal Cancer Therapy. International Journal of Biological Macromolecules, 112, 65-73.
https://doi.org/10.1016/j.ijbiomac.2018.01.136
[62]  Maiti, C., Parida, S., Kayal, S., et al. (2018) Redox-Responsive Core-Cross-Linked Block Copolymer Micelles for Overcoming Multidrug Resistance in Cancer Cells. ACS Applied Materials & Interfaces, 10, 5318-5330.
https://doi.org/10.1021/acsami.7b18245
[63]  Liu, B., Tan, L., He, C., et al. (2018) Redox-Responsive Micelles Self-Assembled from Multi-Block Copolymer for Co-Delivery of Sirna and Hydrophobic Anticancer Drug. Polymer Bulletin, 76, 4237-4257.
https://doi.org/10.1007/s00289-018-2600-y
[64]  Chen, W., Yuan, Y., Cheng, D., et al. (2014) Co-Delivery of Doxorubicin and siRNA with Reduction and pH Dually Sensitive Nanocarrier for Synergistic Cancer Therapy. Small, 10, 2678-2687.
https://doi.org/10.1002/smll.201303951
[65]  Qian, C., Yu, J., Chen, Y., et al. (2016) Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy. Advanced Materials, 28, 3313-3320.
https://doi.org/10.1002/adma.201505869
[66]  Zeng, Y., Ma, J., Zhan, Y., et al. (2018) Hypoxia-Activated Prodrugs and Re-dox-Responsive Nanocarriers. International Journal of Nanomedicine, 13, 6551-6574.
https://doi.org/10.2147/IJN.S173431
[67]  Kizaka-Kondoh, S., Inoue, M., Harada, H. and Hiraoka, M. (2003) Tumor Hypoxia: A Target for Selective Cancer Therapy. Cancer Science, 94, 1021-1028.
https://doi.org/10.1111/j.1349-7006.2003.tb01395.x
[68]  Liu, J.N., Bu, W. and Shi, J. (2017) Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chemical Reviews, 117, 6160-6224.
https://doi.org/10.1021/acs.chemrev.6b00525
[69]  Thambi, T., Deepagan, V.G., Yoon, H.Y., et al. (2014) Hypoxia-Responsive Polymeric Nanoparticles for Tumor-Targeted Drug Delivery. Biomaterials, 35, 1735-1743.
https://doi.org/10.1016/j.biomaterials.2013.11.022
[70]  Piao, W., Tsuda, S., Tanaka, Y., et al. (2013) Development of Azo-Based Fluorescent Probes to Detect Different Levels of Hypoxia. Angewandte Chemie International Edition, 52, 13028-13032.
https://doi.org/10.1002/anie.201305784
[71]  Babin, J., Pelletier, M., Lepage, M., et al. (2009) A New Two-Photon-Sensitive Block Copolymer Nanocarrier. Angewandte Chemie International Edition, 48, 3329-3332.
https://doi.org/10.1002/anie.200900255
[72]  Fomina, N., Sankaranarayanan, J. and Almutairi, A. (2012) Photochemical Me-chanisms of Light-Triggered Release from Nanocarriers. Advanced Drug Delivery Reviews, 64, 1005-1020.
https://doi.org/10.1016/j.addr.2012.02.006
[73]  Zhao, Y. (2012) Light-Responsive Block Copolymer Micelles. Macromolecules, 45, 3647-3657.
https://doi.org/10.1021/ma300094t
[74]  Baghbani, F. and Moztarzadeh, F. (2017) Bypassing Multidrug Resistant Ovarian Cancer Using Ultrasound Responsive Doxorubicin/Curcumin Co-Deliver Alginate Nanodroplets. Colloids and Surfaces B: Biointer-faces, 153, 132-140.
https://doi.org/10.1016/j.colsurfb.2017.01.051
[75]  Baghbani, F., Chegeni, M., Moztarzadeh, F., Hadian-Ghazvini, S. and Raz, M. (2017) Novel Ultrasound-Responsive Chitosan/Perfluorohexane Nanodroplets for Image-Guided Smart Delivery of an Anticancer Agent: Curcumin. Materials Science and Engineering: C, 74, 186-193.
https://doi.org/10.1016/j.msec.2016.11.107
[76]  Wang, P., Yin, T., Li, J., et al. (2016) Ultrasound-Responsive Microbubbles for Sonography-Guided siRNA Delivery. Nanomedicine: Na-notechnology, Biology and Medicine, 12, 1139-1149.
https://doi.org/10.1016/j.nano.2015.12.361
[77]  Alex, M.R.A., Nehate, C., Veeranarayanan, S., et al. (2017) Self Assembled Dual Responsive Micelles Stabilized with Protein for Co-Delivery of Drug and siRNA in Cancer Therapy. Biomaterials, 133, 94-106.
https://doi.org/10.1016/j.biomaterials.2017.04.022
[78]  Teo, J.Y., Chin, W., Ke, X., et al. (2017) pH and Redox Dual-Responsive Biodegradable Polymeric Micelles with High Drug Loading for Effective Anticancer Drug Delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 431-442.
https://doi.org/10.1016/j.nano.2016.09.016
[79]  Zhuang, W., Xu, Y., Li, G., et al. (2018) Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ACS Applied Materials & Interfaces, 10, 18489-18498.
https://doi.org/10.1021/acsami.8b02890
[80]  Yu, H., Cui, Z., Yu, P., et al. (2015) pH-and NIR Light-Responsive Micelles with Hyperthermia-Triggered Tumor Penetration and Cytoplasm Drug Release to Reverse Doxorubicin Resistance in Breast Cancer. Advanced Functional Materials, 25, 2489-2500.
https://doi.org/10.1002/adfm.201404484
[81]  Xu, X., Li, L., Zhou, Z., Sun, W. and Huang, Y. (2016) Dual-pH Responsive Micelle Platform for Co-Delivery of Axitinib and Doxorubicin. International Journal of Pharmaceutics, 507, 50-60.
https://doi.org/10.1016/j.ijpharm.2016.04.060
[82]  Wang, Y., Luo, Q., Zhu, W., et al. (2016) Reduction/pH Dual-Responsive Nano-Prodrug Micelles for Controlled Drug Delivery. Polymer Chemistry, 7, 2665-2673.
https://doi.org/10.1039/C6PY00168H
[83]  Sang, M.M., Liu, F.L., Wang, Y., et al. (2018) A Novel Redox/pH Dual-Responsive and Hyaluronic Acid-Decorated Multifunctional Magnetic Complex Micelle for Targeted Gambogic Acid Delivery for the Treatment of Triple Negative Breast Cancer. Drug Delivery, 25, 1846-1857.
https://doi.org/10.1080/10717544.2018.1486472
[84]  Li, J., Yu, X., Wang, Y., et al. (2014) A Reduction and pH Dual-Sensitive Polymeric Vector for Long-Circulating and Tumor-Targeted Sirna Delivery. Advanced Materials, 26, 8217-8224.
https://doi.org/10.1002/adma.201403877

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133