|
基于改进回声状态网络的盖亚大数据短时交通状态预测研究
|
Abstract:
[1] | 蒲斌, 李浩, 卢晨阳, 王治辉, 刘华. 基于神经网络的海量GPS数据交通流量预测[J]. 云南大学学报(自然科学版), 2019, 41(1): 53-60. |
[2] | 张海鹏, 杨宏业, 邬鑫珏, 王葆元. 基于公交车GPS数据的短时交通流预测研究[J]. 内蒙古工业大学学报(自然科学版), 2018, 37(1): 75-80. |
[3] | 晏臻, 于重重, 韩璐, 苏维均, 刘平. 基于CNN+LSTM的短时交通流量预测方法[J]. 计算机工程与设计, 2019(9): 2620-2624+2659. |
[4] | 李志帅, 吕宜生, 熊刚. 基于图卷积神经网络和注意力机制的短时交通流量预测[J]. 交通工程, 2019, 19(4): 15-19+28. |
[5] | 闫杨, 孙丽珺, 朱兰婷. 一种基于时空相关性的短时交通流量预测方法[J/OL]. 计算机工程, 1-8. |
[6] | Lin, Y., Zhang, J.-W. and Liu, H. (2019) Deep Learning Based Short-Term Air Traffic Flow Prediction Considering Temporal—Spatial Correlation. Aerospace Science and Technology, 93, Article ID: 105113. |
[7] | Emami, A., Sarvi, M. and Bagloee, S.A. (2019) Using Kalman Filter Algorithm for Short-Term Traffic Flow Prediction in a Connected Vehicle Environment. Journal of Modern Transportation, 27, 222-232.
https://doi.org/10.1007/s40534-019-0193-2 |
[8] | Jaeger, H. (2010) The “Echo State” Approach to Analysing and Training Recurrent Neural Networks—With an Erratum Note. German National Research Center for Information Technology GMD Technical Report Vol. 148, Bonn, 13. |
[9] | Jaeger, H. and Haas, H. (2004) Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Telecommunication. Science, 304, 78-80. https://doi.org/10.1126/science.1091277 |
[10] | Zhang, Q.Y., Qian, H., Chen, Y.P. and Lei, D.M. (2019) A Short-Term Traffic Forecasting Model Based on Echo State Network Optimized by Improved Fruit Fly Optimization Algorithm. Neurocomputing.
https://doi.org/10.1016/j.neucom.2019.02.062 |
[11] | 王小洁. 基于回声状态网络的船舶交通事故预测[J]. 舰船科学技术, 2019, 41(16): 16-18. |
[12] | 李丁园. 回声状态网络结构设计及应用研究[D]: [博士学位论文]. 长春: 吉林大学, 2019. |
[13] | 张晋雁, 陶宏才. 回声状态网络研究[J]. 成都信息工程学院学报, 2015, 30(6): 546-550. |
[14] | Thiede, L.A. and Parlitz, U. (2019) Gradient Based Hyperparameter Optimization in Echo State Net-works. Neural Networks, 115, 23-29. |
[15] | 张家顺. 基于随机森林算法的盖亚大数据清洗的研究[J]. 计算机科学与应用, 2019, 9(9): 1747-1752. |