全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用户群组发现及兴趣用户推荐的改进的K-Means聚类算法
Improved K-Means Clustering Algorithm for User Group Discovery and Interest User Recommendation

DOI: 10.12677/SEA.2019.85027, PP. 223-231

Keywords: K-Means聚类算法,群组发现,用户推荐
K-Means Clustering Algorithm
, Group Discovery, Users Recommendation

Full-Text   Cite this paper   Add to My Lib

Abstract:

当前,电子商务网站、学习资源平台网站以及社交网站普遍都具备对评价事物的推荐功能,而不具备给用户发现和推荐感兴趣用户的功能。针对此问题,本文在K-means聚类算法的基础上加入包含抽样、降维、层次聚类等过程的预聚类阶段,设计出为用户推荐兴趣用户的FPSHK-means群组发现算法,并通过其与经典K-means聚类算法的对照实验,验证了FPSHK-means群组发现算法能比经典K-means算法发现更多的群组,且聚类结果更贴近数据对象的实际分布情况。
At present, e-commerce websites, learning resource platforms websites and social networking sites generally have the recommendation function for comment things, but not the function of users discovering and recommending users who are interested. In this paper, the FPSHK-means group discovery algorithm was designed by blending a pre-clustering stage on the basis of the K-means clustering algorithm. The pre-clustering stage includes sampling, dimensionality reduction and hierarchical clustering. The FPSHK-means group discovery algorithm is designed to recommend interested users for the users. Through the comparison experiment with the classical K-means clustering algorithm, it is verified that the FPSHK-means group discovery algorithm can find more groups than the classical K-means algorithm. And the result of clustering is closer to the actual distribution of the data object.

References

[1]  章永来, 周耀鉴. 聚类算法综述[J]. 计算机应用, 2019, 39(7): 1869-1882.
[2]  甘月松, 陈秀宏, 陈晓晖. 一种AP算法的改进: M-AP聚类算法[J]. 计算机科学, 2015, 42(1): 232-235+267.
[3]  王娟. 一种基于遗传算法的K-means聚类算法[J]. 微型机与应用, 2011, 30(20): 71-76.
[4]  Arthur, D. and Vassilvitskii, S. (2007) K-Means++: The Advantages of Careful Seeding. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1027-1035.
[5]  Goel, L., Jain, N. and Srivastava, S. (2016) A Novel PSO Based Algorithm to Find Initial Seeds for the K-Means Clustering Algorithm. Communication and Computing Systems Clustering Algorithm. 2016 The International Conference on Communication and Computing Systems, Gurgaon, 9-11 September 2016, 159-163.
[6]  Gu, L. (2017) A Novel Locality Sensitive K-Means Clustering Algorithm Based on Subtractive Clustering. 2016 7th IEEE International Conference on Software Engineering and Service Science, Beijing, 26-28 August 2016, 836-839.
https://doi.org/10.1109/ICSESS.2016.7883196
[7]  谢娟英, 王艳娥. 最小方差优化初始聚类中心的K-Means算法[J]. 计算机工程, 2014, 40(8): 205-211+223.
[8]  贾瑞玉, 李玉功. 类簇数目和初始中心点自确定的K-Means算法[J]. 计算机工程与应用, 2018, 54(7): 152-158.
[9]  马福民, 逯瑞强, 张腾飞. 基于局部密度自适应度量的粗糙K-Means聚类算法[J]. 计算机工程与科学, 2018, 40(1): 184-190.
[10]  丛思安, 王星星. K-Means算法研究综述[J]. 电子技术与软件工程, 2018(17): 155-156.
[11]  明小红. 基于用户聚类的协同过滤推荐算法研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2017.
[12]  王千, 王成, 冯振元, 叶金凤. K-Means聚类算法研究综述[J]. 电子设计工程, 2012, 20(7): 21-24.
[13]  Li, D.-Y. and Cao, C.-F. (2017) An Improved K-Means Clustering Algorithm Applicable to Massive High-Dimensional Matrix Datasets. Proceedings of the 2017 International Conference on Information Science and Technology, EDP Sciences, Wuhan, 24-26 March 2017, 269-275.
[14]  Li, D.-Y. and Cao, C.-F. (2017) Discovering Movie Categories Based on SPHK-Means Clustering Algorithm. Proceedings of the 2017 International Conference on Information Science and Technology, EDP Sciences, Wuhan, 24-26 March 2017, 276-283.
[15]  https://en.wikipedia.org/wiki/Precision_and_recall
[16]  Shlens, J. (2014) A Tutorial on Principal Component Analysis.
https://arxiv.org/pdf/1404.1100.pdf
[17]  Segaran, T. (2015) Programming Collective Intelligence. Publishing House of Electronics Industry, Beijing, 49-52.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133