全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

聚乙烯醇纤维水泥稳定碎石的抗裂性和抗冲刷性能
Crack Resistance and Anti-Erosion Performance of Cement Stabilized Macadam Reinforced with Polyvinyl Alcohol Fiber

DOI: 10.12677/HJCE.2019.88149, PP. 1284-1292

Keywords: 聚乙烯醇纤维,水泥稳定碎石,抗裂性能,抗冲刷性能
Polyvinyl Alcohol Fiber
, Cement Stabilized Macadam, Crack Resistance, Anti-Erosion Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

为改善高海拔地区水泥稳定碎石的抗裂性和抗冲刷能力,分别研究了水泥用量、聚乙烯醇纤维掺量与龄期对水泥稳定碎石的路用性能的影响规律,确定了适用于高海拔地区水泥稳定碎石的合理水泥用量和聚乙烯醇纤维掺量。结果表明,随着龄期的增长,干缩系数显著下降,且下降幅度主要集中在前7天;较高的聚乙烯醇纤维掺量和较低的水泥用量有利于水泥稳定碎石抗裂性的提升,当纤维掺量在0.9 vt‰、水泥用量为5.0 wt%时水泥稳定碎石不仅具有良好的抗裂性能,而且具有优良的抗冲刷性能。
To improve the crack resistance and anti-erosion performance of cement stabilized macadam in high altitude area, the effects of cement content, PVA fiber content and curing period on mechanical properties and crack resistance were investigated. This paper reasonably quantified cement and PVA fiber content. The results showed that dry shrinkage coefficient significantly decreased with increase of curing period, mainly in the first seven days. The increase of fiber content and decrease of cement content improved the crack resistance of cement stabilized macadam. When the fiber content was 0.9 wt‰ and the cement content was 5.0 vt%, both crack resistance and anti-erosion performance of cement stabilized macadam were excellent.

References

[1]  周启伟, 叶伟, 等. 水泥稳定碎石低温强度与干缩特性分析[J]. 硅酸盐学报, 2016, 35(3): 948-952.
[2]  Kjellsen, K.O. and Lagerblad, B. (2007) Microstructure of Tricalcium Silicate and Portland Cement Systems at Middle Periods of Hydration Development of Hadley Grains. Cement and Concrete Research, 37, 13-20.
https://doi.org/10.1016/j.cemconres.2006.09.008
[3]  朱唐亮, 谈至明. 半刚性基层材料抗冲刷性能影响因素研究[J]. 公路交通科技, 2014, 31(11): 41-46.
[4]  潘钻峰, 汪卫, 等. 混杂聚乙烯醇纤维增强水泥基复合材料力学性能[J]. 同济大学学报(自然科学版), 2015, 43(1): 33-40.
[5]  唐羽, 吴国雄, 等. 半刚性基层沥青路面基面层间界面强度研究[J]. 重庆交通大学学报(自然科学版), 2016, 35(3): 33-37.
[6]  张静, 魏连雨, 等. 水泥稳定碎石早期微裂干缩性能试验研究[J]. 硅酸盐学报, 2016, 35(11): 3865-3869.
[7]  Makar, J.M., Chan, G.W. and Esseghaier, K.Y. (2007) A Peak in the Hydration Reaction at the End of the Cement Induction Period. Journal of Materials Science, 42, 1388-1392.
https://doi.org/10.1007/s10853-006-1427-3
[8]  刘曙光, 闫敏, 等. 聚乙烯醇纤维强化水泥基复合材料的抗盐冻性能[J]. 吉林大学学报(工学版), 2012, 42(1): 63-67.
[9]  孙兆辉. 水泥稳定碎石温缩变形特性试验研究[J]. 建筑材料学报, 2009, 12(2): 166-171.
[10]  Ahmed, S., Maalej, M. and Paramasivam, P. (2007) Analytical Model for Tensile Strain Hardening and Multiple Cracking Behavior of Hybrid Fiber-Engineered Cementitious Composites. Journal of Material in Civil Engineering, 19, 527.
https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(527)
[11]  程培峰, 于铭泽. 掺玄武岩纤维水泥稳定碎石温缩抗裂性能试验研究[J]. 中外公路, 2013(6): 234-238.
[12]  杨红辉, 王建勋, 郝培文, 等. 纤维在水泥稳定碎石基层中的应用[J]. 长安大学学报(自然科学版), 2006, 26(3): 14-17.
[13]  朱唐亮, 谈至明, 周玉民. 半刚性基层材料抗冲刷性能的试验研究[J]. 建筑材料学报, 2013, 16(4): 608-613.
[14]  李立寒, 黄璞. 旋转与静压成型对水泥稳定碎石性能的影响[J]. 长安大学学报(自然科学版), 2016, 36(6): 17-24.
[15]  JTG E51-2009. 公路工程无机结合料稳定材料试验规程[S]. 北京: 人民交通出版社, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133