全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

在线学习行为与学习效果——基于学习分析的实证研究
Online Learning Behavior and Learning Outcomes

DOI: 10.12677/HJDM.2019.94017, PP. 135-144

Keywords: 学习分析,在线学习,学习效果,成绩预警,干预警示
Learning Analysis
, Online Learning, Learning Effect, Achievement Early Warning Analysis, Intervention Warning

Full-Text   Cite this paper   Add to My Lib

Abstract:

网络教学平台凭借独特的时空便利性受到越来越多人的关注,通过挖掘学习者在技术平台上留下的海量行为数据,可以掌握学习者的学习状况,从而对学习过程起到干预和指导作用。鉴于此,文中采用了意大利热那亚大学计算机工程专业大一学生参加“数字电路”实验课程的行为数据集,通过对学生进行成绩预警分析,探索了学习行为与学习效果之间的关系。结论表明:在对学生能否通过最终测验进行不及格预警分析时,用分类树模型于课程学习的中后期阶段进行预测效果较好;在对学生的最终测验成绩进行分数预警分析时,用回归树模型于课程学习的前中期阶段进行预测效果较好。
Network teaching platform has attracted more and more attention due to its unique spatial and temporal convenience. By mining massive behavioral data left by learners on the technology plat-form, learners’ learning status can be mastered, thus playing an intervention and guidance role in the learning process. In view of this, this paper adopted the behavior data set of the freshmen ma-joring in computer engineering from the University of Genoa, Italy, who took part in the experiment course of “digital circuit”, and explored the relationship between learning behavior and learning effect by analyzing the students’ performance warning. The conclusion shows that in the early warning analysis of whether the students can pass the final test, the effect is better when the classification tree model is used to predict the grades in middle and late stage of the course learning. In the warning analysis of how many points can students get, the effect is better when the re-gression tree model is used to predict the grades in preintermediate stage of the course learning.

References

[1]  DeBoer, J., Stump, G., Seaton, D. and Breslow, L. (2013) Diversity in MOOC Students’ Backgrounds and Behaviors in Relationship to Performance in 6.002 x. Proceedings of the 6th Learning International Networks Consortium Conference, Cambridge, 2013.
[2]  李阳, 马力, 官巍. 大学生在线学习行为与人格特征的相关性研究[J]. 中国教育信息化, 2016(17): 18-21.
[3]  宗阳, 陈丽, 郑勤华, 等. 基于在线学习行为数据的远程学习者学业情绪分析研究——以Moodle平台为例[J]. 北京广播电视大学学报, 2017(6): 11-20.
[4]  陈晋音, 方航, 林翔, 郑海斌, 杨东勇, 周晓. 基于在线学习行为分析的个性化学习推荐[J]. 计算机科学, 2018, 45(S2): 422-426+452.
[5]  赵蔚, 李士平. 基于学习分析的自我调节学习路径挖掘与反馈研究[J]. 中国电化教育, 2018, 381(10): 15-21.
[6]  魏顺平. 在线教育管理者视角下的学习分析——在线教学绩效评估模式构建与应用[J]. 现代教育技术, 2014, 24(9): 79-85+93.
[7]  刘双. 基于xAPI的网络学习行为数据采集工具设计与实现[D]: [硕士学位论文]. 武汉: 华中师范大学, 2016.
[8]  洪丹丹, 李飞, 姚磊, 徐墨, 锁志海. 在线学习行为分析数据可视化快速开发框架设计与实践[J]. 微电子学与计算机, 2018, 35(7): 6-12.
[9]  谭召, 鲁雁, 武斌. 在线学习平台设计与学习行为分析[J]. 信息与电脑(理论版), 2018(8): 118-120.
[10]  谢修娟, 李香菊, 操凤平, 孙丽. 基于改进C4.5的E-Learning教学辅助系统的研究与实现[J]. 佳木斯大学学报(自然科学版), 2018, 36(1): 64-67+82.
[11]  Jiang, S., Williams, A.E., Schenke, K., Warschauer, M. and O’Dowd, D. (2014) Predicting MOOC Performance with Week 1 Behavior. Proceedings of the 7th International Conference on Educational Data Mining, Cordoba, 2014.
[12]  Kloft, M., Stiehler, F., Zheng, Z. and Pinkwart, N. (2014) Predicting MOOC Dropout over Weeks Using Machine Learning Methods. Proceedings of the EMNLP Workshop on Modeling Large Scale Social Interaction in Massively Open Online Courses, Doha, October 2014, 60-65.
https://doi.org/10.3115/v1/W14-4111
[13]  Halawa, S., Greene, D. and Mitchell, J. (2014) Dropout Prediction in MOOCs Using Learner Activity Features. Proceedings of the European MOOC Summit.
[14]  李阳. 大数据环境下在线学习行为分析模型研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2017.
[15]  王慧芬. 基于Hadoop的学习者在线学习行为研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2017.
[16]  吴林静, 劳传媛, 刘清堂, 程云, 毛刚. 网络学习空间中的在线学习行为分析模型及应用研究[J]. 现代教育技术, 2018, 28(6): 46-53.
[17]  Vahdat, M., Oneto, L., Anguita, D., Funk, M. and Rauterberg, M. (2015) A Learning Analytics Approach to Correlate the Academic Achievements of Students with Interaction Data from an Educational Simulator. In: Conole, G., et al., Eds., EC-TEL 2015, LNCS 9307, Springer, Berlin, 352-366.
https://doi.org/10.1007/978-3-319-24258-3
[18]  郑富龙. 仿真实验与传统实验的教学探索[J]. 实验室研究与探索, 2005(9): 84-86.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133