全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2019 

上市公司“五性”间的波动溢出效应研究——基于面板及BEKK-GARCH模型的分析
Research on the Fluctuation Spillover Effect of “Five Sex” in Listed Companies—Based on Panel and BEKK-GARCH Model Analysis

DOI: 10.12677/FIN.2019.96064, PP. 573-585

Keywords: 波动溢出效应,煤炭行业,BEKK-GARCH模型,面板回归模型,收益性
Volatility Spillover Effect
, Coal Industry, BEKK-GARCH Model, Panel Regression Model,Profitability

Full-Text   Cite this paper   Add to My Lib

Abstract:

我国提出的供给侧结构性改革转变了经济发展形式,改变了企业生产管理模式,因此在供给侧改革背景下把握影响上市公司收益的关键特性以及之间波动溢出效应的动态变化具有重要意义。基于我国煤炭行业18家主要上市公司2004~2018年财务指标,通过构建面板回归模型,从成长性、流动性、安全性和生产性识别影响收益的关键因素,并针对收益前10的企业建立BEKK-GARCH模型,挖掘其关键特性的波动溢出效应的动态变化。结果表明:(1) 影响收益性的关键因素是生产性;(2) 公司之间生产性波动溢出效应表现出集聚性,这些变化与改革政策相关;(3) 大型综合性煤炭公司,比如神华能源,更能在改革过程中抓住获得收益的关键点,其生产经营方式对其他公司具有指导借鉴意义。基于研究结论,本文认为企业应从生产性把握企业未来发展战略。
The supply-side structural reform proposed by China has transformed the form of economic de-velopment and changed the mode of production management. Therefore, it is of great significance to grasp the key characteristics of the listed company’s earnings and the dynamic changes of the volatility spillover effect in the context of supply-side reform. Based on the financial indicators of 18 major listed companies in China’s coal industry in 2004-2018, by constructing a panel regression model, the key factors affecting the growth of growth, liquidity, safety and productivity are identified, and the BEKK-GARCH model is built to exploit the profitability. The top 10 companies have dynamic changes in volatility spillovers in key characteristics. The results show that: (1) the key factor affecting profitability is productivity; (2) the productive volatility spillover effect in companies shows agglomeration, and these changes are related to reform policies; (3) large com-prehensive coal companies, such as Shenhua Energy can better grasp the key points of gains in the reform process, and its production and operation methods have guiding significance for other companies. Based on the research conclusions, this paper believes that enterprises should grasp the future development strategy of enterprises from the perspective of productivity.


References

[1]  郭栋. 美国国债利率对中国债市宏观基本面冲击及两国利率联动时变效应研究——基于GVAR和TVP-VAR模型的实证分析[J]. 国际金融研究, 2019, 384(4): 55-65.
[2]  冯其云, 周靖祥. 高铁时代广深双城及其与腹地城市联动关系识别的证据[J]. 重庆大学学报(社会科学版), 2017, 23(2): 15-29.
[3]  杨文华, 卢露, 林树. P2P网贷利率与传统金融市场利率的联动效应研究——基于尾部风险溢出视角[J]. 金融经济学研究, 2018, 33(5): 61-70.
[4]  陈暮紫, 陈敏, 吴武清, 缪柏其. 中国A股市场行业板块间领滞关系的动态变化实证研究[J]. 系统工程理论与实践, 2009, 29(6): 18-31
[5]  蒋勇, 王国长, 吴武清. 股指期货的价格发现机制:基于结构变点分析框架[J]. 财经科学, 2014(6): 52-62.
[6]  刘凤根, 周驭舰. 股票市场波动性特征及溢出效应经验研究[J]. 云南财经大学学报, 2018, 34(11): 47-58.
[7]  谭小芬, 张峻晓, 郑辛如. 国际大宗商品市场与金融市场的双向溢出效应——基于BEKK-GARCH模型和溢出指数法的实证研究[J]. 中国软科学, 2018(8): 31-48.
[8]  林征, 林雅娜, 黄晓玲. 黄金、美元、石油市场间溢出效应研究——基于3元BEKK-GARCH模型的实证分析[J]. 经济研究导刊, 2015(11): 186-189.
[9]  何红霞, 胡日东. 大中华区股市波动溢出效应实证研究——基于多元非对称BEKK-GARCH模型[J]. 重庆科技学院学报(社会科学版), 2011(10): 139-143.
[10]  楚尔鸣, 鲁旭. 基于VECM-BEKK-二元GARCH模型的沪市A、B股市场信息传导关系研究[J]. 经济评论, 2009(2): 50-56.
[11]  孙少岩, 孙文轩. 加入SDR后人民币汇率波动规律研究——基于ARIMA-GARCH模型的实证分析[J]. 经济问题, 2018, 474(2): 42-47.
[12]  黄飞雪, 谷静, 李延喜, 苏敬勤. 金融危机前后的全球主要股指联动与动态稳定性比较[J]. 系统工程理论与实践, 2010, 30(10): 1729-1740.
[13]  谭海霞. 煤炭业安全经济贡献率测算及安全投入的社会分工[D]: [博士学位论文]. 重庆: 重庆大学, 2011.
[14]  Bollerslev, T., Engle, R.F. and Wooldridge, J.M. (1888) A Capital Asset Pricing Model with Time-Varying Covariances. Journal of Political Economy, 96, 116-131.
https://doi.org/10.1086/261527
[15]  Engle, R.F. and Kroner, K.F. (1895) Multivariate Simul-taneous Generalized ARCH. Econometric Theory, 11, 122-150.
https://doi.org/10.1017/S0266466600009063

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133