全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带有指数型扩散项Ornstein-Uhlenback过程的参数估计
Parameter Estimation for Fractional Ornstein-Uhlenbeck with Exponential Diffusion Term

DOI: 10.12677/SA.2019.86098, PP. 872-880

Keywords: 参数估计,分数布朗运动
Parameter Estimation
, Fractional Brownian Motion

Full-Text   Cite this paper   Add to My Lib

Abstract:

在本文中,我们研究带有指数型扩散项分数布朗运动驱动的Ornstein-Uhlenbeck过程的最小二乘估计\"\",其中Hurst指数H≥1/2 。dXt=-θXtdt+σectdBtH,我们讨论\"\"满足相合性以及当1/2≤H≤5/8时应用多重维纳积分的中心极限定理得到\"\"-θ的渐进分布。这个最小二乘估计同时可以推导出其它类型的估计量,例如\"\"可由函数∫0TXt2dt进行表示。
In this paper, we consider a least square estimator \"\" for the Ornstein-Uhlenbeck processes driven by fractional Brownian motion (fBm) with Hurst index H≥1/2 and exponential diffusion term. dXt=-θXtdt+σectdBtH, we prove the strong consistent of \"\" , and also obtain the asymptotic distribution of?\"\"-θ,?when 1/2≤H≤5/8, applying a central limit theorem for multiple Wiener integrals. This least square estimator can be used to study other estimators such as \"\" obtained by a function of 0TXt2dt .

References

[1]  Hu, Y. and Nualart, D. (2010) Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes. Statistics and Probability Letters, 80, 1030-1038.
https://doi.org/10.1016/j.spl.2010.02.018
[2]  Hu, Y., Nualart, D. and Zhou, H. (2019) Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes of General Hurst Parameter. Statistical Inference for Stochastic Processes, 22, 111-142.
https://doi.org/10.1007/s11203-017-9168-2
[3]  Kleptsyna, M.L. and Le Breton, A. (2002) Statistical Analysis of the Fractional Ornstein-Uhlenbeck Type Process. Statistical Inference for Stochastic Processes, 5, 229-248.
https://doi.org/10.1023/A:1021220818545
[4]  Nualart, D. (1995) The Malliavin Calculus and Related Topics. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4757-2437-0
[5]  Nualart, D. and Peccati, G. (2005) Central Limit Theorems for Sequences of Multiple Stochastic Integrals. The Annals of Probability, 33, 177-193.
https://www.jstor.org/stable/3481767
https://doi.org/10.1214/009117904000000621
[6]  Nualart, D. and Ortiz-Latorre, S. (2008) Central Limit Theorems for Multiple Stochastic Integrals and Malliavin Calculus. Stochastic Processes and Their Applications, 118, 614-628.
https://doi.org/10.1016/j.spa.2007.05.004
[7]  Pickands, J. (1969) Asymptotic Properties of the Maximum in a Stationary Gaussian Process. American Math Society, 145, 75-86.
https://www.jstor.org/stable/1995059
https://doi.org/10.2307/1995059

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133