全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于BP神经网络和拟合对收得率的预测
Prediction of Yield Based on BP Neural Network and Fitting

DOI: 10.12677/MEng.2019.64032, PP. 232-239

Keywords: 碳锰含量,BP神经网络,拟合,仿真优化
Carbon and Manganese Content
, BP Neural Network, Fitting, Simulation Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

炼钢过程中的脱氧合金化是钢铁冶炼中的重要工艺环节。本文研究建立了关于碳锰元素收得率预测模型,仿真优化检验,定义出控制空间定理来评判模型预测准确率。其次,使用BP神经网络和拟合两种方法,分别建立出脱氧合金化过程的合金元素收得率预测模型,缩短学习训练时间,提高模型预测精度,得出BP神经网络预测值均在85%以上,拟合预测值均在82%以上,结果表明:随机选取100炉次的生产数据进行仿真优化,根据控制区间定理知,拟合的预测准确率达到84%以上,BP神经网络预测准确率均在89%以上,BP神经网络预测模型更符合生产要求。
Deoxidation alloying in the steelmaking process is an important process link in steel smelting. In this paper, a prediction model for the carbon and manganese yield is studied and established, and the simulation optimization test is defined. The control space theorem is defined to judge the model prediction accuracy. Secondly, using BP neural network and fitting methods, the prediction models of alloy element yield in the process of deoxidizing alloying are established respectively, which shortens the learning and training time and improves the prediction accuracy of the model. The predicted values of BP neural network are both 85%. Above, the fitting prediction values are all above 82%. The results show that: 100 production times are randomly selected for simulation optimization. According to the control interval theorem, the fitting prediction accuracy rate is above 84%, and the BP neural network prediction accuracy rate is above 89%, and the BP neural network prediction model is more in line with production requirements.

References

[1]  马海志. BP神经网络的改进研究及应用[D]: [硕士学位论文]. 哈尔滨: 东北农业大学, 2011.
[2]  包燕平, 张超杰, 王敏. 炼钢过程中合金减量化研究现状及展望[J]. 工程科学学报, 2018, 40(9): 1017-1026.
[3]  薛正良, 吴丽嘉, 王炜, 左都伟, 罗斌, 彭灿峰, 郝飞翔, 严明. 转炉终点钢水残锰含量及锰收得率的影响因素分析[J]. 炼钢, 2011, 27(6): 40-43.
[4]  徐端, 刘士新. 数据驱动和机理模型混合的炼钢–连铸能耗建模研究[J]. 河北冶金, 2018(10): 14-19+40.
[5]  潘军, 邓南阳, 胡惠华, 赵斌, 薛顺, 王义平. 降低低合金钢Q345B合金消耗的工艺优化[J]. 钢铁研究, 2015, 43(2): 56-58.
[6]  Biao, T., et al. (2017) The Research Process on Converter Steelmaking Process by Using Limestone. IOP Conference Series: Earth and Environmental Science, 81, Article ID: 012175.
[7]  韩敏, 徐俏, 赵耀, 林东, 杨溪林. 基于收得率预测模型的转炉炼钢合金加入量计算[J]. 炼钢, 2010, 26(1): 44-47.
[8]  王广. 人工神经网络发展现状综述[J]. 中小企业管理与科技(下旬刊), 2017(2): 165-167.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133