全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

工业智能边缘计算中基于数据流相关性的计算卸载研究
Research on Computing Offloading Based on data Stream Correlation in Industrial Intelligent Edge Computing

DOI: 10.12677/SEA.2019.86045, PP. 364-371

Keywords: 边缘计算,机器学习,工业物联网,计算卸载
Edge Computing
, Machine Learning, Industrial Internet of Things, Computation Offloading

Full-Text   Cite this paper   Add to My Lib

Abstract:

大数据时代背景下为满足工业物联网的高实时性需求,我们运用边缘计算和机器学习技术提出了一种工业智能边缘计算中基于数据流相关性的计算卸载方法。采用拓扑排序、决策树等方式寻求任务相关性,避免无关数据卸载、多任务场景下重复数据多次卸载及无序卸载导致的缓存过多,存储器容量不足等问题。本研究设计了两种调度算法,分别对应多任务决策所需特征数据重复率高和低的两种不同场景下所采用的计算卸载算法,保证了任务处理的实时性;此外本研究均严格控制在带宽约束下,保证了调度的可靠性。
In order to meet the high real-time demand under the background of industrial Internet of Things in the era of big data, we propose a task offloading method based on data stream correlation in industrial intelligent edge computing based on edge computing and machine learning. Topological sorting, decision tree are adopted to seek task relevance, so as to avoid problems such as excessive cache and insufficient memory capacity caused by irrelevant data offloading, repeat data offloading multiple times and unordered offloading in multi-task scenarios. In this study, two scheduling algorithms are designed, respectively corresponding to two different scenarios of high and low repetition rate of characteristic data required by multi-task decision so as to ensure the real-time performance of task processing. In addition, this study is strictly controlled under the constraint of bandwidth to ensure the reliability of scheduling.

References

[1]  Li, Z., Zhou, X. and Qin, Y. (2019) A Survey of Mobile Edge Computing in the Industrial Internet. 2019 7th Interna-tional Conference on Information, Communication and Networks (ICICN), Macao, 24-26 April 2019, 94-98.
https://doi.org/10.1109/ICICN.2019.8834959
[2]  Khan, S., Paul, D., et al. (2018) Artificial Intelligence Frame-work for Smart City Microgrids: State of the Art, Challenges, and Opportunities. 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, 23-26 April 2018, 283-288.
https://doi.org/10.1109/FMEC.2018.8364080
[3]  Tang, B., Chen, Z., Hefferman, G., et al. (2017) Incorporating Intelligence in Fog Computing for Big Data Analysis in Smart Cities. IEEE Transactions on Industrial Informatics, 13, 2140-2150.
[4]  Song, Y., Yau, S.S., Yu, R., et al. (2017) An Approach to QoS-Based Task Distribution in Edge Computing Networks for IoT Applications. 2017 IEEE International Conference on Edge Computing (EDGE), Honolulu, 25-30 June 2017, 32-39.
https://doi.org/10.1109/IEEE.EDGE.2017.50
[5]  Wei, F., Chen, S. and Zou, W. (2018) A Greedy Algorithm for Task Offloading in Mobile Edge Computing System. China Communications, 15, 149-157.
https://doi.org/10.1109/CC.2018.8543056
[6]  Zhang, D., Ma, Y., Zheng, C., et al. () Cooperative-Competitive Task Allocation in Edge Computing for Delay-Sensitive Social Sensing. 2018 IEEE/ACM Symposium on Edge Computing (SEC), Seattle, 25-27 October 2018, 243-259.
https://doi.org/10.1109/SEC.2018.00025
[7]  Dab, B., Aitsaadi, N. and Langar, R. (2019) A Novel Joint Offloading and Resource Allocation Scheme for Mobile Edge Computing. 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, 11-14 January 2019, 1-2.
https://doi.org/10.1109/CCNC.2019.8651879
[8]  Liu, C., Cao, Y., Luo, Y., et al. (2018) A New Deep Learning-Based Food Recognition System for Dietary Assessment on An Edge Computing Service Infrastructure. IEEE Transactions on Services Computing, 11, 249-261
[9]  Ali, M., Anjum, A., Yaseen, M.U., et al. (2018) Edge Enhanced Deep Learning System for Large-Scale Video Stream Analytics. 2018 IEEE 2nd International Conference on Fog and Edge Computing (ICFEC), Washington, DC, 1-3 May 2018, 1-10.
https://doi.org/10.1109/CFEC.2018.8358733
[10]  黄鸿, 莫李思, 孙罡. 一种基于端口聚合流量的Coflow调度机制[J]. 通信技术, 2018, 51(7): 1594-1601.
[11]  马腾, 胡宇翔, 张校辉. 基于深度增强学习的数据中心网络Coflow调度机制[J]. 电子学报, 2018, 46(7): 84-91.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133