全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于电子病历的疾病风险预测
Disease Risk Prediction Based on EHR

DOI: 10.12677/HJDM.2020.101005, PP. 47-55

Keywords: 深度学习,电子病历,词嵌入,长短期记忆网络
Deep Learning
, Electronic Health Records, Word Embedding, Long Short-Term Memory Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

数据驱动的医疗保健(data driven healthcare)作为可用的大型医疗数据的使用,以提供最好的和最个性化的护理,正成为医疗行业革命成功的主要趋势之一。电子病历是推动这一数据驱动的医疗革命成功的主要载体。本文运用深度学习的方法,基于词嵌入模型实现对电子病历信息的表示,利用长短期记忆(LSTM)网络模型特性,实现对电子病历信息时间上的无规律性和疾病信息长期依赖挑战的解决,实现对疾病风险的预测,通过与卷积神经网络(CNN)模型进行比对,实验结果显示本文方法的有效性。
Data driven health care, as the use of available large-scale medical data, to provide the best and most personalized care, is becoming one of the main trends of the success of the revolution in the medical industry. Electronic health record is the main carrier to promote the success of this da-ta-driven medical revolution. In this paper, we use the method of deep learning, based on the word embedding model to express the EHR information, and use the characteristics of the long-term memory network model to solve the irregular time of EHR information and the long-term depend-ence of disease information, so as to achieve the prediction of disease risk. Compared with the con-volution neural network model, the results show the effectiveness of this method.

References

[1]  Jensen, P.B., Jensen, L.J. and Brunak, S. (2012) Mining Electronic Health Records: Towards Better Research Applica-tions and Clinical Care. Nature Reviews Genetics, 13, 395-405.
https://doi.org/10.1038/nrg3208
[2]  Caroprese, L., Veltri, P., Vocaturo, E. and Zumpano, E. (2018) Deep Learning Techniques for Electronic Health Record Analysis. 2018 9th International Conference on Information, Intelligence, Systems and Applications, Zakynthos, Greece, 23-25 July 2018, 1-4.
https://doi.org/10.1109/IISA.2018.8633647
[3]  Madsen, L.B. (2014) Data-Driven Healthcare: How Analytics and BI Are Transforming the Industry. MIT Technology Review Business Report, 117, 1-19.
[4]  Madsen, L.B. (2014) Data-Driven Healthcare: How Analytics and BI Are Transforming the Industry. Wiley, New York.
[5]  Ho, J.C., Ghosh, J. and Sun, J.M. (2014) Marble: High-Throughput Phenotyping from Electronic Health Records via Sparse Nonnegative Tensor Factorization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Dining (KDD’14), 115-124.
[6]  Cheng, Y., Wang, F., Zhang, P. and Hu, J.Y. (2016) Risk Pre-diction with Electronic Health Records: A Deep Learning Approach. Proceedings of the 2016 SIAM International Con-ference on Data Mining (SDM’ 16), Miami, FL, 5-7 May 2016, 432-440.
https://doi.org/10.1137/1.9781611974348.49
[7]  Zhou, J., Wang, F., Hu, J. and Ye, J. (2014) From Micro to Macro: Data Driven Phenotyping by Densification Longitudinal Electronic Medical Records. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, 135-144.
https://doi.org/10.1145/2623330.2623711
[8]  Wang, F., Zhang, P., Qian, B., Wang, X. and Davidson, I. (2014) Clinical Risk Prediction with Multilinear Sparse Logistic Regression. In: Proceedings of the 20th ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data mining, ACM, New York, 145-154.
https://doi.org/10.1145/2623330.2623755
[9]  Chen, L. (2019) Assertion Detection in Clinical Natural Language Pro-cessing: A Knowledge-Poor Machine Learning Approach. 2019 IEEE 2nd International Conference on Information and Computer Technologies, Kahului, HI, 14-17 March 2019, 37-40.
https://doi.org/10.1109/INFOCT.2019.8710921
[10]  Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735
[11]  Rumelhart, D.E. (1986) Learning Representations by Back-Propagating Errors. Nature, 323, 533-536.
https://doi.org/10.1038/323533a0
[12]  Choi, E., Bahadori, M.T., Searles, E., et al. (2016) Multi-Layer Representa-tion Learning for Medical Concepts. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2016, 1495-1504.
https://doi.org/10.1145/2939672.2939823
[13]  Choi, E., Bahadori, M., Song, L., et al. (2016) GRAM: Graph-Based Attention Model for Healthcare Representation Learning. Computer Science, 787-795.
[14]  Ma, F.L., Radha, C. and Zhou, J. (2017) Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2017, 1903-1911.
https://doi.org/10.1145/3097983.3098088
[15]  Che, Z., Cheng, Y., Zhai, S., Sun, Z. and Liu, Y. (2017) Boosting Deep Learning Risk Prediction with Generative Adversarial Networks for Electronic Health Records. 2017 IEEE Inter-national Conference on Data Mining, New Orleans, LA, 18-21 November 2017, 787-792.
https://doi.org/10.1109/ICDM.2017.93
[16]  Choi, E., Bahadori, M.T., Kulas, J.A., Schuetz, A. and Stewart, W.F. (2016) RETAIN: An Interpretable Predictive Model for Healthcare Using Reverse Time Attention Mechanism. Computer Science, 3504-3512.
[17]  Suo, Q., Ma, F., Yuan, Y., et al. (2017) Personalized Disease Prediction Using a CNN-Based Similarity Learning Method. 2017 IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, MO, 13-16 November 2017, 811-816.
https://doi.org/10.1109/BIBM.2017.8217759

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133