全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

宁波持续型霾的天气分型研究
The Classification Study of the Persistent Haze in Ningbo

DOI: 10.12677/AG.2020.101001, PP. 1-10

Keywords: 宁波,持续型霾,天气分型,气象因子
Ningbo
, Persistent Haze, Weather Classification, Meteorological Factor

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用常规气象站地面观测资料,探空资料和空气质量数据,分析了宁波市2010~2018年霾情况,结果表明,《大气污染防治条例》颁布以来,宁波市霾日数明显减少,持续型霾过程一般持续4天左右。造成持续型霾的地面气压场可分为高压场,均压场,冷空气缓慢扩散场三种主要类型,分别占总数的72%,11%,17%。霾过程的高空形势主要有平直西风型和副高控制型。低空风切变和地面风速与能见度在高压场控制期成正相关,而在弱冷空气扩散场控制时相关性不明显。K值或T925-850越大,则越利于污染物垂直扩散稀释,提高能见度,反之会导致霾加重。
Based on the ground weather observation data, sounding data, and air quality data, the haze situation of Ningbo City in 2010-2018 was analyzed. The results show that: since the “Air Pollution Control Regulations” were promulgated, the number of haze days in Ningbo has been significantly reduced, and the persistent haze process usually lasts about 4 days. The surface pressure field which causes continuous haze can be divided into three main types: high pressure field, equal pressure field, and cold air slow diffusion field, which account for 72%, 11%, and 17% of the total, respectively. And the high-altitude situation in the haze process can be mainly straight westerly and sub-tropic high control. Low-altitude wind shear and ground wind speed have a positive correlation with visibility during the control period of the high-pressure field, but the correlation is not obvious when controlled by the weak-cold air diffusion field. The larger the K value or T925-850 is, the more conducive it is to the vertical diffusion and dilution of pollutants, so the visibility can be improved, and conversely, haze will be aggravated.

References

[1]  王跃思, 张军科, 王莉莉, 等. 京津冀区域大气霾污染研究意义现状及展望[J]. 地球科学进展, 2014, 29(3): 388-396.
[2]  张浩月, 王雪松, 陆克定, 等. 珠江三角洲秋季典型气象条件对O3和PM10污染的影响[J]. 北京大学学报(自然科学版), 2014, 50(3): 565-576.
[3]  周宁方, 李峰, 饶晓琴, 等. 2006年冬半年我国霾天气特征分析[J]. 气象, 2008, 34(6): 81-88.
[4]  张人禾, 李强, 张若楠. 2013年1月中国东部持续性强雾霾天气产生的气象条件分析[J]. 中国科学(地球科学), 44(1): 27-36.
[5]  刘梅, 严文莲, 张备, 等. 2013年1月江苏雾霾天气持续和增强机制分析[J]. 气象, 2014, 40(7): 835-843.
[6]  牛彧文, 顾骏强, 浦静娇, 等. 浙江城市区域灰霾天气的长期变化[J]. 热带气象学报, 2010, 26(6): 807-812.
[7]  俞科爱, 徐宏辉, 黄旋旋, 等. 宁波秋冬季空气污染变化特征及污染物后向轨迹分析[J]. 浙江气象, 2015, 36(1): 27-31.
[8]  戴竹君, 刘端阳, 王宏斌, 等. 江苏秋冬季重度霾的分型研究[J]. 气象学报, 2016, 74(1): 133-148.
[9]  廖晓农, 张小玲, 王迎春, 等. 北京地区冬夏季持续性雾–霾发生的环境气象条件对比分析[J]. 环境科学, 2014, 35(6): 2031-2043.
[10]  于庚康, 王博妮, 陈鹏, 等. 2013年初江苏连续性雾–霾天气的特征分析[J]. 气象, 2015, 41(5): 622-629.
[11]  中国气象局. QX/T 113-2010霾的观测和预报等级[S]. 北京: 中国气象局, 2010.
[12]  Ge, X.L., Zhang, Q., Sun, Y.L., et al. (2012) Effect of Aqueous-Phase Processing on Aerosol Chemistry and Size Distributions in Fresno, California, during Wintertime. Environmental Chemistry, 9, 221-235.
[13]  Sun, Y.L., Wang, Z.F., Fu, P.Q., et al. (2013) The Impact of Relative Humidity on Aerosol Composition and Evolution Processes during Wintertime in Beijing, China. Atmospheric Environment, 77, 927-934.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133