全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于迭代的支持向量机的产品销售预测模型
Product Sale Forecasting Model Based on Iterative Support Vector Machine

DOI: 10.12677/CSA.2020.101008, PP. 60-69

Keywords: 销售时序,噪声,迭代,支持向量机,预测
Sale Series
, Noise, Iteration, Support Vector Machine, Forecasting

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对产品销售时序具有小样本、含噪声的数据特征,本文设计了一种迭代的支持向量机模型(Iε-SVM)。Iε-SVM采用迭代的方式,在SVM中参数ε逐步减小的过程中,一步步修正那些可能受噪声影响较大的样本点信息,降低这些样本点对最终生成的预测模型的影响。Iε-SVM与ε-SVM一起被应用于处理一个数值算例和一个汽车销售预测实例中,仿真实验结果表明Iε-SVM是有效可行的,可获得比ε-SVM更精确的预测结果。
Aiming at data characteristics of small samples and noise existing in the product sale series, an iterative support vector machine (Iε-SVM) is proposed in this paper. During the gradually reducing process of Iε-SVM’s parameter ε, the samples greatly affected by noise are iteratively amended to reduce their influence on the final forecasting model generated. Iε-SVM is applied to a numerical value example and the automobile sales forecasting in contrast with the ε support vector machine (ε-SVM). The experiment results indicate that Iε-SVM is effective and feasible, by which more accurate forecasting results are obtained over the ε-SVM.

References

[1]  Vapnik, V.N. (2000) The Nature of Statistical Learning Theory. Springer, New York, 138-167.
https://doi.org/10.1007/978-1-4757-3264-1
[2]  邓乃扬, 田英杰. 数据挖掘中的新方法—支持向量机[M]. 北京: 科学出版社, 2006.
[3]  周辉仁, 郑丕谔, 任仙玲. 最小二乘支持向量机的参数优选方法及应用[J]. 系统工程学报, 2009, 24(2): 248-252.
[4]  姚宝珍, 杨成永, 于滨. 动态公交车辆运行时间预测模型[J]. 系统工程学报, 2010, 25(3): 365-370.
[5]  李大铭, 于滨. 公交运营的协控准点滞站调度模型[J]. 系统工程学报, 2012, 27(2): 248-255.
[6]  商志根, 严洪森. 基于模糊支持向量机的产品设计时间预测[J]. 控制与决策, 2012, 27(4): 531-534.
[7]  时培明, 梁凯, 赵娜, 等. 基于深度学习特征提取和粒子群支持向量机状态识别的齿轮智能故障诊断[J]. 中国机械工程, 2017, 28(9): 1056-1061.
[8]  张燕君, 王会敏, 付兴虎, 等. 基于粒子群支持向量机的钢板损伤位置识别[J]. 中国激光, 2017, 44(10): 197-203.
[9]  肖鹏飞, 张超勇, 罗敏, 等. 基于自适应动态无偏最小二乘支持向量机的刀具磨损预测建模[J]. 中国机械工程, 2018, 29(7): 842-849.
[10]  张英, 苏宏业, 褚健. 基于模糊最小二乘支持向量机的软测量建模[J]. 控制与决策, 2005, 20(6): 621-624.
[11]  姚潇, 余乐安. 模糊近似支持向量机模型及其在信用风险评估中的应用[J]. 系统工程理论实践, 2012, 32(3): 549-554.
[12]  Lin, C.F. and Wang, S.D. (2004) Training Algorithms for Fuzzy Support Vector Machines with Noisy Data. Pattern Recognition Let-ters, 25, 1647-1656.
https://doi.org/10.1016/j.patrec.2004.06.009
[13]  Li, D., Hu, W.C., Xiong, W. and Yang, J.B. (2008) Fuzzy Relevance Vector Machine for Learning from Unbalanced Data and Noise. Pattern Recognition Letters, 29, 1175-1181.
https://doi.org/10.1016/j.patrec.2008.01.009
[14]  张桂香, 费岚, 杜喆, 刘三阳. 非均衡数据的去噪模糊支持向量机新方法[J]. 计算机工程与应用, 2008, 44(16): 142-144.
[15]  蒋蔚, 伊国兴, 曾庆双. 一种基于SVM重采样的似然粒子滤波算法[J]. 控制与决策, 2011, 26(2): 243-247.
[16]  吴奇, 严洪森. 基于具有高斯损失函数支持向量机的预测模型[J]. 计算机集成制造系统, 2009, 15(2): 306-312.
[17]  Li, H.X., Yang, J.L., Zhang, G. and Fan, B. (2013) Probabilistic Support Vector Machines for Classification of Noise Affected Data. Information Sci-ences, 221, 60-71.
https://doi.org/10.1016/j.ins.2012.09.041
[18]  Keerthi, S.S., Shevade, S.K., Bhattacharyya, C. and Murthy, K.R.K. (2000) A Fast Iterative Nearest Point Algorithm for Support Vector Machine Classifier Design. IEEE Transactions on Neural Networks, 11, 124-136.
https://doi.org/10.1109/72.822516
[19]  Zhou, S.S., Liu, H.W., Ye, F. and Zhou, L.H. (2009) A New Iterative Al-gorithm Training SVM. Optimization Methods and Software, 24, 913-932.
https://doi.org/10.1080/10556780902867906
[20]  Ye, Q.L., Zhao, C.X., Ye, N. and Chen, Y.N. (2010) Iterative Support Vector Machine with Guaranteed Accuracy and Run Time. Expert Systems, 27, 338-348.
https://doi.org/10.1111/j.1468-0394.2010.00550.x
[21]  Liu, D.H., Qian, H., Dai, G. and Zhang, Z. (2013) An Iter-ative SVM Approach to Feature Selection and Classification in High-Dimensional Datasets. Pattern Recognition, 46, 2531-2537.
https://doi.org/10.1016/j.patcog.2013.02.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133