全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于手机信令数据的出行方式识别方法研究
Research on the Recognition Method of Travel Mode Based on Mobile Phone Signaling Data

DOI: 10.12677/OJTT.2020.91001, PP. 1-9

Keywords: 手机信令数据,导航数据,出行方式识别
Mobile Signaling Data
, Navigation Data, Recognition of Travel Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究手机信令数据在识别用户出行方式领域的应用,进一步提高出行方式识别的准确度。首先,介绍了手机信令数据产生的原理、聚类算法选取的原则。然后,根据地上地下基站的不同将出行方式的识别分为两个方向:地面出行方式、地铁出行的识别。接着,针对地面交通、地铁出行将信令数据分别与导航轨迹数据、地铁基站库数据进行结合建立了模型,以此判定用户的出行方式。最后,基于某运行商提供的志愿者的信令数据对模型进行验证。研究结果表明,该识别算法正确率达86.12%,有效的提升了出行方式识别算法的精度。
In order to study the application of mobile signaling data in the field of identifying user’s travel mode, and improve the accuracy of travel mode identification, firstly, we introduce the principle of signaling data generation, the selection and principle of clustering algorithm. Then, according to the difference between the aboveground and underground base stations, the identification of travel mode can be divided into two directions: the identification of ground travel mode, and the identification of subway. Then, the signaling data is combined with the navigation track data and the base station database data to establish the model for the ground traffic and the subway travel, so as to determine the user’s travel mode. Finally, the model is validated based on the signaling data of volunteers provided by operators. The result shows that the accuracy of the algorithm is 86.12%, which effectively improves the accuracy of the algorithm.

References

[1]  唐小勇, 周涛, 陆百川. 基于手机信令的大范围人流移动分析[J]. 重庆交通大学学报(自然科学版), 2017, 36(1): 82-87.
[2]  Yang, F., Yao, Z. and Jin, P.J. (2015) Multi-Mode Trip Information Recognition Based on Wavelet Transform Modulus Maximum Algorithm by Using GPS and Acceleration Data. Transportation Research Board 94th Annual Meeting, Washington DC, 11-15 January 2015, 90-98.
[3]  Asakura, Y. and Iryo, T. (2007) Analysis of Tourist Behaviour Based on the Tracking Data Collected Using a Mobile Communication Instrument. Transportation Research Part A: Policy and Practice, 41, 684-690. https://doi.org/10.1016/j.tra.2006.07.003
[4]  Caceres, N., Wideberg, J.P. and Benitez, F.G. (2007) Deriving Origin Destination Data from a Mobile Phone Network. IET Intelligent Transport Systems, 1, 15-26. https://doi.org/10.1049/iet-its:20060020
[5]  Vajakas, T., Vajakas, J. and Lillemets, R. (2015) Trajectory Reconstruction from Mobile Positioning Data Using Cell-to-Cell Travel Time Information. International Journal of Geographical Information Science, 29, 1941-1954. https://doi.org/10.1080/13658816.2015.1049540
[6]  李祖芬, 于雷, 高永, 等. 基于手机信令定位数据的居民出行时空分布特征提取方法[J]. 交通运输研究, 2016, 2(1): 51-57.
[7]  Stopher, P., Fitzgerald, C. and Zhang, J. (2008) Search for a Global Positioning System Device to Measure Person Travel. Transportation Research Part C Emerging Technologies, 16, 350-369. https://doi.org/10.1016/j.trc.2007.10.002
[8]  Bohte, W. and Maat, K. (2009) Deriving and Validating Trip Purposes and Travel Modes for Multi-Day GPS-Based Travel Surveys: A Large-Scale Application in the Netherlands. Transportation Research Part C, 17, 285-297. https://doi.org/10.1016/j.trc.2008.11.004
[9]  Chen, C., Gong, H., Lawson, C., et al. (2010) Evaluating the Feasibility of a Passive Travel Survey Collection in a Complex Urban Environment: Lessons Learned from the New York City Case Study. Transportation Research Part A: Policy and Practice, 44, 830-840. https://doi.org/10.1016/j.tra.2010.08.004
[10]  Anderson, I. and Muller, H. (2008) Exploring GSM Data in Pervasive Environments. International Journal of Pervasive Computing and Communications, 4, 8-25. https://doi.org/10.1108/17427370810873075
[11]  Wang, H., Calabrese, F., Di Lorenzo, G., et al. (2010) Transportation Mode Inference from Anonymized and Aggregated Mobile Phone Call Detail Records. 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, 19-22 September 2010, 318-323. https://doi.org/10.1109/ITSC.2010.5625188
[12]  Ning, Y. and Liu, X.X. (2015) Traffic Pattern Recognition System Design and Development Based on Smart Phones. International Conference on Intelligent Computation Technology & Automation, Changsha, 25-26 October 2014, 154-157. https://doi.org/10.1109/ICICTA.2014.45
[13]  Hong, S. and Vonderohe, A. (2014) Uncertainty and Sensitivity Assessments of GPS and GIS Integrated Applications for Transportation. Sensors, 14, 2683-2702. https://doi.org/10.3390/s140202683
[14]  Reddy, S., Mun, M., Burke, J., et al. (2010) Using Mobile Phones to Determine Transportation Modes. ACM Transactions on Sensor Networks, 6, 13. https://doi.org/10.1145/1689239.1689243
[15]  张博. 基于手机网络定位的OD调查的出行方式划分研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2010.
[16]  闫彭. 基于AGPS手机的交通方式识别研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2012.
[17]  张治华. 基于GPS轨迹的出行信息提取研究[D]: [博士学位论文]. 上海: 华东师范大学, 2010.
[18]  汪磊, 左忠义, 傅军豪. 基于SVM的出行方式特征分析和识别研究[J]. 交通运输系统工程与信息, 2014, 14(3): 70-75.
[19]  赖见辉, 陈艳艳, 钟园, 等. 基于手机定位信息的地铁乘客出行路径辨识方法[J]. 计算机应用, 2013, 33(2): 583-586.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133