全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

粒子群寻优支持向量机在储层类型预测中的应用
Application of Particle Swarm Optimization Support Vector Machine in Reservoir Prediction

DOI: 10.12677/AG.2020.101003, PP. 18-26

Keywords: 储层预测,支持向量机,粒子群寻优,测井解释
Support Vector Classification (SVC)
, Particle Swarm Optimization (PSO), Reservoir Classification, Log Interpretation

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对珠一坳陷恩平组致密砂岩储层难以预测的问题,本文在使用基于支持向量机分类模型的储层类型预测方法的基础上,结合粒子群寻优法对模型进行校正与完善,提高了模型的正确率。通过典型井测试与试采分析法对恩平组储层的样本进行了储层类型分类,在每种类型的储层样本中选取80%的样本作为建模数据,并在每种储层类型内进行乱序交叉验证,得到模型的交叉验证分数,然后用粒子寻优的方法提高模型交叉验证分数,得到最佳预测模型,再用未参与建模的样本对预测模型进行检验。由此模型作出测井解释图,即可以直观的看出有效储层的所在井段的位置,也能方便地计算出有效储层的厚度。
In view of the problem that it is difficult to predict reservoirs in tight sandstone reservoirs of Enping formation in area of Zhu I depression, SVC is used to predict porosity of reservoirs by logging interpretation. The correctness of the model is improved by combining SVC with particle swarm optimization. The reservoir types of Enping formation are classified by typical well test and production test analysis. 80% of the samples of each type of reservoir are selected as modeling data, and random cross validation is carried out in each type of reservoir to get the cross-validation score of the model. Then the particle optimization method is used to improve the cross-validation score of the model to get the best prediction model. Then the prediction model is tested with the samples that are not involved in the modeling. From this model, the well log interpretation map can be made, that is, the location of the well section where the effective reservoir is located can be directly seen and the thickness of effective reservoir can also be calculated conveniently.

References

[1]  徐壮, 石万忠, 翟刚毅, 等. 涪陵地区页岩总孔隙度测井预测[J]. 石油学报, 2017, 38(5): 533-543.
[2]  胡作维, 李云. 基于偏最小二乘法评价低渗透砂岩储层质量[J]. 特种油气藏, 2013, 20(5): 36-39.
[3]  范雯. 逐步回归分析方法在储层参数预测中的应用[J]. 西安科技大学学报, 2014, 34(3): 350-355.
[4]  陈文浩, 王志章, 董少群, 等. 核岭回归方法解释致密砂岩储层孔隙度[J]. 测井技术, 2015, 39(6): 710-714.
[5]  吕晓光, 杜庆龙. 应用人工神经网络模型进行油层孔隙度, 渗透率预测[J]. 大庆石油地质与开发, 1996(3): 27-31.
[6]  Iqbal, M. (2005) Numerical Solutions of Linear Ill-Posed Problems. Integral Transforms & Special Functions, 16, 29-37.
https://doi.org/10.1080/1065246042000271992
[7]  Phillips, D.L. (1962) A Technique for the Numerical Solution of Certain Integral Equations of the First Kind. Journal of the ACM, 9, 84-97.
https://doi.org/10.1145/321105.321114
[8]  Cortes, C. and Vapnik, V. (1995) Support-Vector Networks. Machine Learning, 20, 273-297. https://doi.org/10.1007/BF00994018
[9]  乐友喜, 袁全社. 支持向量机方法在储层预测中的应用[J]. 石油物探, 2005, 44(4): 388-392.
[10]  滕新保, 张宏兵, 曹呈浩, 等. 一种新的砂泥岩孔隙度估计模型及其应用[J]. 河海大学学报: 自然科学版, 2015, 43(4): 346-350.
[11]  张向君, 张晔. 基于支持向量机的交互检验储层预测[J]. 石油物探, 2018, 57(4): 597-600.
[12]  李建军, 伦墨华. 基于支持向量机的石油勘探预测[J]. 科技通报, 2018(4): 79-83.
[13]  施和生, 雷永昌, 吴梦霜, 等. 珠一坳陷深层砂岩储层孔隙演化研究[J]. 地学前缘, 2008, 15(1): 169-175.
[14]  孟倩, 马小平, 周延. 改进的粒子群支持向量机预测瓦斯涌出量[J]. 矿业安全与环保, 2015(2): 1-5.
[15]  张燕君, 王会敏, 付兴虎, 等. 基于粒子群支持向量机的钢板损伤位置识别[J]. 中国激光, 2017(10): 197-203.
[16]  帅勇, 宋太亮, 王建平. 考虑全过程优化的支持向量机预测方法[J]. 系统工程与电子技术, 2017, 39(4): 931-940.
[17]  Xiong, W.L. and Xu, B.G. (2006) Study on Optimization of SVR Parameters Selection Based on PSO. Journal of System Simulation, 9, 2442-2445.
[18]  付超, 林年添, 张栋, 等. 多波地震深度学习的油气储层分布预测案例[J]. 地球物理学报, 2018, 61(1): 293-303.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133