全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

聚焦透镜到靶材表面距离对等离子体红外光谱的影响
Effect of the Distance from the Focusing Lens to the Target Surface on the Infrared Spectrum

DOI: 10.12677/APP.2020.101010, PP. 85-90

Keywords: 红外光谱,纳秒脉冲激光,透镜到样品表面距离,铝
IR
, Nanosecond Pulsed Laser, Lens to Sample Surface Distance, Aluminum

Full-Text   Cite this paper   Add to My Lib

Abstract:

使用Nd:YAG纳秒脉冲激光诱导铝靶材产生等离子体,通过改变聚焦透镜到靶材表面的距离(LTSD),观察原子光谱的强度变化。在实验研究的波长范围内,我们讨论的谱线为O I 1128 nm、N I 1249 nm和Al I 1312 nm。结果表明,谱线强度随着LTSD的变化而变化;针对75 mm焦距的聚焦透镜,O和Al的谱线强度在LTSD为70 mm处到达最大值,N的谱线则是靶材表面在焦点处最大。
Nd:YAG nanosecond pulsed laser was used to induce the aluminum target to generate plasma. By changing the distance from the focusing lens to the target surface (LTSD), the intensity of the atomic spectrum and the change of the plasma morphology were observed. In the wavelength range of the experimental study, the spectral lines we discussed are O I 1128 nm, N I 1249 nm, and Al I 1312 nm. The results show that the intensity of the spectral line changes with the change of LTSD. For a focusing lens with a focal length of 75 mm, the spectral intensity of O and Al reaches the maximum at LTSD of 70 mm, and the spectral line of N is the maximum at the focal point of the target surface.

References

[1]  Hahn, D.W. and Omenetto, N. (2012) Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues within the Analytical Plasma Community. Applied Spectroscopy, 66, 347.
[2]  Effenberger Jr., A.J. and Scott, J.R. (2010) Effect of Atmospheric Conditions on LIBS Spectra. Sensors, 10, 4907-4925.
https://doi.org/10.3390/s100504907
[3]  De Lucia Jr., F.C., Gottfried, J.L., Munson, C.A. and Miziolek, A.W. (2009) Current Status of Standoff LIBS Security Applications at the United States Army Research Laboratory. Spectroscopy, 24, 32.
[4]  Gruber, J., Heitz, J., Arnold, N., et al. (2004) In situ Analysis of Metal Melts in Metallurgic Vacuum Devices by Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 58, 457-462.
https://doi.org/10.1366/000370204773580310
[5]  Pearman, W., Scaffidi, J. and Angel, S.M. (2003) Dual-Pulse Laser-Induced Breakdown Spectroscopy in Bulk Aqueous Solution with an Orthogonal Beam Geometry. Applied Optics, 42, 6085-6093.
https://doi.org/10.1364/AO.42.006085
[6]  Diego-Vallejo, D., Ashkenasi, D. and Eichler, H.J. (2013) Monitoring of Focus Position during Laser Processing Based on Plasma Emission. Physics Procedia, 41, 911-918.
https://doi.org/10.1016/j.phpro.2013.03.166
[7]  Li, X.W., Wei, W., Wu, J., et al. (2013) The Influence of Spot Size on the Expansion Dynamics of Nanosecond-Laser-Produced Copper Plasmas in Atmosphere. Journal of Applied Physics, 113, Article ID: 243304.
https://doi.org/10.1063/1.4812580
[8]  Liu, Y.H., Chen, M., Liu, X.D., et al. (2013) The Mechanism of Effect of Lens-to-Sample Distance on Laser-Induced Plasma. Acta Physica Sinica, 62, Article ID: 025203.
[9]  张德江, 林晓梅. AOD炉在线激光光谱测与分析技术[M]. 北京: 科学出版社, 2012.
[10]  Wang, X.S., Song, X.W., Gao, X. and Lin, J.Q. (2019) The Effect of Air Pressure on the IR Spectral Emission from Laser Induced Air Plasma. Optics Communications, 456, Article ID: 124603.
https://doi.org/10.1016/j.optcom.2019.124603
[11]  宋一中, 李亮. 激光诱导Al等离子体连续辐射的时间分布[J]. 光学学报, 2001(4): 404-409.
[12]  Yu, J., Ma, Q.L., Motto-Ros, V., et al. (2012) Generation and Expansion of Laser-Induced Plasma as a Spectroscopic Emission Source. Frontiers of Physics, 7, 649-669.
https://doi.org/10.1007/s11467-012-0251-2
[13]  王静鸽, 陈兴龙, 付洪波, 倪志波, 贺文干, 董凤忠. 透镜到样品的距离对激光诱导等离子体的影响[J]. 光学学报, 2014, 34(9): 326-333.
[14]  Zhang, Y.Z., Wang, G.A., Zhu, J.R., et al. (2007) Influence of Defocusing Distance on Mechanical Effect of Plasma Shock Wave Induced by Laser. Chinese Laser, 34, 318-322.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133