|
Applied Physics 2020
激光锡等离子体极紫外光谱的优化研究
|
Abstract:
[1] | Bol’shakov, A.A., Mao, X., González, J.J. and Russo, R.E. (2016) Laser Ablation Molecular Isotopic Spectrometry (LAMIS): Current State of the Art. Journal of Analytical Atomic Spectrometry, 31, 119-134. https://doi.org/10.1039/C5JA00310E |
[2] | Fortes, F.J., Moros, J., Lucena, P., Cabalín, L.M. and Laserna, J.J. (2012) Laser-Induced Breakdown Spectroscopy. Analytical Chemistry, 85, 640-669. https://doi.org/10.1021/ac303220r |
[3] | Amoruso, S., Bruzzese, R., Spinelli, N. and Velotta, R. (1999) Characterization of Laser-Ablation Plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 32, R131-R172. https://doi.org/10.1088/0953-4075/32/14/201 |
[4] | Gwyn, C.W. (1998) Extreme Ultraviolet Lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 16, 3142. https://doi.org/10.1116/1.590453 |
[5] | Orji, N.G., Badaroglu, M., Barnes, B.M., Beitia, C., Bunday, B.D., Celano, U. and Vladar, A.E. (2018) Metrology for the Next Generation of Semiconductor Devices. Nature Electronics, 1, 532-547. https://doi.org/10.1038/s41928-018-0150-9 |
[6] | Tomita, K., Sato, Y., Tsukiyama, S., Eguchi, T., Uchino, K., Kouge, K., and Nishihara, K. (2017) Time-Resolved Two-Dimensional Profiles of Electron Density and Temperature of Laser-Produced Tin Plasmas for Extreme-Ultraviolet Lithography Light Sources. Scientific Reports, 7, Article No. 12328. https://doi.org/10.1038/s41598-017-11685-0 |
[7] | Harilal, S.S., Sizyuk, T., Sizyuk, V. and Hassanein, A. (2010) Efficient Laser-Produced Plasma Extreme Ultraviolet Sources Using Grooved Sn Targets. Applied Physics Letters, 96, 111503. https://doi.org/10.1063/1.3364141 |
[8] | Matsukuma, H., Sunahara, A., Yanagida, T., Tomuro, H., Kouge, K., Kodama, T. and Nishimura, H. (2015) Correlation between Laser Absorption and Radiation Conversion Efficiency in Laser Produced Tin Plasma. Applied Physics Letters, 107, 121103. https://doi.org/10.1063/1.4931698 |
[9] | Higashiguchi, T., Otsuka, T., Yugami, N., Jiang, W., Endo, A., Li, B. and O’Sullivan, G. (2012) Laser-Produced Plasma UTA Emission in 3 - 7 nm Spectral Region. Extreme Ultraviolet (EUV) Lithography III, Vol. 8322. https://doi.org/10.1117/12.916308 |
[10] | Oliver, J. and Sizyuk, T. (2019) Stagnation Layer Development from Two Colliding Sn Plasmas for an Efficient EUV Source. Physics of Plasmas, 26, 043517. https://doi.org/10.1063/1.5080243 |
[11] | Hara, H., Kawasaki, H., Tamura, T., Hatano, T., Ejima, T., Jiang, W. and Higashiguchi, T. (2018) Emission of Water-Window Soft X-Rays under Optically Thin Conditions Using Low-Density Foam Targets. Optics Letters, 43, 3750-3753. https://doi.org/10.1364/OL.43.003750 |
[12] | Colombant, D. and Tonon, G.F. (1973) X-Ray Emission in Laser-Produced Plasmas. Journal of Applied Physics, 44, 3524-3537. https://doi.org/10.1063/1.1662796 |
[13] | 窦银萍. 6.7 nm输出波长Gd靶激光等离子体极紫外光源的研究[D]: [博士学位论文]. 长春: 长春理工大学, 2015. |
[14] | Tao, Y., Harilal, S.S., Tillack, M.S., Sequoia, K.L., O’Shay, B. and Najmabadi, F. (2006) Effect of Focal Spot Size on In-Band 13.5 nm Extreme Ultraviolet Emission from Laser-Produced Sn Plasma. Optics Letters, 31, 2492. https://doi.org/10.1364/OL.31.002492 |