|
基于LPQ特征的视网膜OCT图像分类算法
|
Abstract:
[1] | Rickman, C.B., Farsiu, S., Toth, C.A., et al. (2013) Dry Age-Related Macular Degeneration: Mechanisms, Therapeutic Targets, and Imaging. Investigative Ophthalmology & Visual Science, 54, ORSF68-ORSF80.
https://doi.org/10.1167/iovs.13-12757 |
[2] | Hee, M.R., Izatt, J.A., Swanson, E.A., et al. (1995) Optical Coherence Tomography of the Human Retina. Archives of Ophthalmology, 113, 325-332. https://doi.org/10.1001/archopht.1995.01100030081025 |
[3] | Liu, Y.Y., Chen, M., Ishikawa, H., et al. (2011) Au-tomated Macular Pathology Diagnosis in Retinal OCT Images Using Multi-Scale Spatial Pyramid and Local Binary Pat-terns in Texture and Shape Encoding. Medical Image Analysis, 15, 748-759. https://doi.org/10.1016/j.media.2011.06.005 |
[4] | Zheng, Y., Hijazi, M.H.A. and Coenen, F. (2012) Automated “Disease/No Disease” Grading of Age-Related Macular Degeneration by an Image Mining Approach. Investigative Ophthalmology & Visual Science, 53, 8310-8318.
https://doi.org/10.1167/iovs.12-9576 |
[5] | Zhang, Y., Zhang, B., Coenen, F., et al. (2014) One-Class Kernel Sub-space Ensemble for Medical Image Classification. EURASIP Journal on Advances in Signal Processing, 2014, Article No. 17.
https://doi.org/10.1186/1687-6180-2014-17 |
[6] | Mookiah, M.R.K., Acharya, U.R., Koh, J.E.W., et al. (2014) Au-tomated Diagnosis of Age-Related Macular Degeneration Using Greyscale Features from Digital Fundus Images. Com-puters in Biology and Medicine, 53, 55-64.
https://doi.org/10.1016/j.compbiomed.2014.07.015 |
[7] | Srinivasan, P.P., Kim, L.A., Mettu, P.S., et al. (2014) Fully Automated Detection of Diabetic Macular Edema and Dry Age-Related Macular Degeneration from Optical Co-herence Tomography Images. Biomedical Optics Express, 5, 3568-3577. https://doi.org/10.1364/BOE.5.003568 |
[8] | Sun, Y., Li, S. and Sun, Z. (2017) Fully Automated Macular Pathology Detection in Retina Optical Coherence Tomography Images Using Sparse Coding and Dictionary Learning. Journal of Biomedical Optics, 22, Article ID: 016012.
https://doi.org/10.1117/1.JBO.22.1.016012 |
[9] | Kermany, D.S., Goldbaum, M., Cai, W., et al. (2018) Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, 172, 1122-1131. https://doi.org/10.1016/j.cell.2018.02.010 |
[10] | De Fauw, J., Ledsam, J.R., Romera-Paredes, B., et al. (2018) Clini-cally Applicable Deep Learning for Diagnosis and Referral in Retinal Disease. Nature Medicine, 24, 1342-1350. https://doi.org/10.1038/s41591-018-0107-6 |
[11] | Schlegl, T., Waldstein, S.M., Bogunovic, H., et al. (2018) Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology, 125, 549-558. https://doi.org/10.1016/j.ophtha.2017.10.031 |
[12] | Lee, C.S., Baughman, D.M. and Lee, A.Y. (2017) Deep Learn-ing Is Effective for Classifying Normal versus Age-Related Macular Degeneration OCT Images. Ophthalmology Retina, 1, 322-327.
https://doi.org/10.1016/j.oret.2016.12.009 |
[13] | Dabov, K., Foi, A., Katkovnik, V., et al. (2007) Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Transactions on Image Processing, 16, 2080-2095. https://doi.org/10.1109/TIP.2007.901238 |
[14] | Otsu, N. (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66. https://doi.org/10.1109/TSMC.1979.4310076 |
[15] | Ojansivu, V., Rahtu, E. and Heikkila, J. (2008) Rotation Invar-iant Local Phase Quantization for Blur Insensitive Texture Analysis. IEEE 19th International Conference on Pattern Recognition, Tampa, 8-11 December 2008, 1-4.
https://doi.org/10.1109/ICPR.2008.4761377 |
[16] | Lei, Z., Ahonen, T., Pietik?inen, M., et al. (2011) Local Fre-quency Descriptor for Low-Resolution Face Recognition. IEEE Face and Gesture, Santa Barbara, 21-25 March 2011, 161-166. https://doi.org/10.1109/FG.2011.5771391 |