全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于LPQ特征的视网膜OCT图像分类算法
Algorithm for Classification of the Retinal OCT Images with LPQ Features

DOI: 10.12677/CSA.2020.101012, PP. 112-117

Keywords: 计算机辅助诊断,视网膜OCT图像,局部相位量化,主成分分析,支持向量机
Computer Aided Diagnosis
, Retinal OCT Image, Local Phase Quantization, Principal Component Analysis, Support Vector Machine

Full-Text   Cite this paper   Add to My Lib

Abstract:

为缓解我国眼科疾病患者多、医生少、医疗压力巨大的国情,提出一种基于局部相位量化(local phase quantization, LPQ)特征的视网膜OCT图像分类算法。首先对图像进行预处理,主要包括对感兴趣区域探测阶段、拟合阶段和切割阶段;其次提取切割后图像的LPQ特征;然后利用PCA方法对其降维;最后,利用SVM进行分类。在Duke视网膜数据集上对算法进行了验证,并和现有文献中提到的LBP特征、Gabor特征及SIFT特征进行了对比研究。实验结果表明,利用LPQ特征可以得到相对更好的分类结果。
In order to alleviate the situation of more ophthalmology patients, few doctors and huge medical pressure in China, an algorithm for classification of retinal OCT images with LPQ features is proposed. Firstly, the acquired OCT images are preprocessed in three steps including the perceiving phase, the fitting phase and the cutting phase; Secondly, LPQ features are extracted; Then PCA method is used to reduce the dimensionality; Finally, the SVM is employed for classification of images. The algorithm is verified on Duke retinal data set, and is compared with those methods which use LBP feature, Gabor feature or SIFT feature. Experimental results show that the LPQ feature can obtain relatively better classification results.

References

[1]  Rickman, C.B., Farsiu, S., Toth, C.A., et al. (2013) Dry Age-Related Macular Degeneration: Mechanisms, Therapeutic Targets, and Imaging. Investigative Ophthalmology & Visual Science, 54, ORSF68-ORSF80.
https://doi.org/10.1167/iovs.13-12757
[2]  Hee, M.R., Izatt, J.A., Swanson, E.A., et al. (1995) Optical Coherence Tomography of the Human Retina. Archives of Ophthalmology, 113, 325-332.
https://doi.org/10.1001/archopht.1995.01100030081025
[3]  Liu, Y.Y., Chen, M., Ishikawa, H., et al. (2011) Au-tomated Macular Pathology Diagnosis in Retinal OCT Images Using Multi-Scale Spatial Pyramid and Local Binary Pat-terns in Texture and Shape Encoding. Medical Image Analysis, 15, 748-759.
https://doi.org/10.1016/j.media.2011.06.005
[4]  Zheng, Y., Hijazi, M.H.A. and Coenen, F. (2012) Automated “Disease/No Disease” Grading of Age-Related Macular Degeneration by an Image Mining Approach. Investigative Ophthalmology & Visual Science, 53, 8310-8318.
https://doi.org/10.1167/iovs.12-9576
[5]  Zhang, Y., Zhang, B., Coenen, F., et al. (2014) One-Class Kernel Sub-space Ensemble for Medical Image Classification. EURASIP Journal on Advances in Signal Processing, 2014, Article No. 17.
https://doi.org/10.1186/1687-6180-2014-17
[6]  Mookiah, M.R.K., Acharya, U.R., Koh, J.E.W., et al. (2014) Au-tomated Diagnosis of Age-Related Macular Degeneration Using Greyscale Features from Digital Fundus Images. Com-puters in Biology and Medicine, 53, 55-64.
https://doi.org/10.1016/j.compbiomed.2014.07.015
[7]  Srinivasan, P.P., Kim, L.A., Mettu, P.S., et al. (2014) Fully Automated Detection of Diabetic Macular Edema and Dry Age-Related Macular Degeneration from Optical Co-herence Tomography Images. Biomedical Optics Express, 5, 3568-3577.
https://doi.org/10.1364/BOE.5.003568
[8]  Sun, Y., Li, S. and Sun, Z. (2017) Fully Automated Macular Pathology Detection in Retina Optical Coherence Tomography Images Using Sparse Coding and Dictionary Learning. Journal of Biomedical Optics, 22, Article ID: 016012.
https://doi.org/10.1117/1.JBO.22.1.016012
[9]  Kermany, D.S., Goldbaum, M., Cai, W., et al. (2018) Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, 172, 1122-1131.
https://doi.org/10.1016/j.cell.2018.02.010
[10]  De Fauw, J., Ledsam, J.R., Romera-Paredes, B., et al. (2018) Clini-cally Applicable Deep Learning for Diagnosis and Referral in Retinal Disease. Nature Medicine, 24, 1342-1350.
https://doi.org/10.1038/s41591-018-0107-6
[11]  Schlegl, T., Waldstein, S.M., Bogunovic, H., et al. (2018) Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology, 125, 549-558.
https://doi.org/10.1016/j.ophtha.2017.10.031
[12]  Lee, C.S., Baughman, D.M. and Lee, A.Y. (2017) Deep Learn-ing Is Effective for Classifying Normal versus Age-Related Macular Degeneration OCT Images. Ophthalmology Retina, 1, 322-327.
https://doi.org/10.1016/j.oret.2016.12.009
[13]  Dabov, K., Foi, A., Katkovnik, V., et al. (2007) Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Transactions on Image Processing, 16, 2080-2095.
https://doi.org/10.1109/TIP.2007.901238
[14]  Otsu, N. (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66.
https://doi.org/10.1109/TSMC.1979.4310076
[15]  Ojansivu, V., Rahtu, E. and Heikkila, J. (2008) Rotation Invar-iant Local Phase Quantization for Blur Insensitive Texture Analysis. IEEE 19th International Conference on Pattern Recognition, Tampa, 8-11 December 2008, 1-4.
https://doi.org/10.1109/ICPR.2008.4761377
[16]  Lei, Z., Ahonen, T., Pietik?inen, M., et al. (2011) Local Fre-quency Descriptor for Low-Resolution Face Recognition. IEEE Face and Gesture, Santa Barbara, 21-25 March 2011, 161-166.
https://doi.org/10.1109/FG.2011.5771391

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133