全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于电塔快速提取的点云配准算法研究
Research on Point Cloud Registration Algorithm Based on Fast Extraction of Electric Tower

DOI: 10.12677/TDET.2020.91001, PP. 1-7

Keywords: 体素化下采样,点云配准,电力巡线
Voxel Grid
, Point Cloud Registration, Power Line Inspection

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着技术发展,基于无人机航摄与激光扫描的电网数据采集方式在电网建设中,尤其是电力巡线、树障分析等工作中具有越来越重要的地位。同时随着数据采集设备的更新换代,点云数据量点数也越来越大。本文针对倾斜密集点云与激光扫描点云在点云配准时点云数量过大的问题,提出一种体素化点云简化的方法。通过将点云体素化后计算出的体素重心来代表体素从而简化点云,利用简化后的点云结合快速点特征直方图(FPFH)算法与迭代最邻近点算法(ICP)实现电塔数据的快速配准。实验表明此方法在不损失配准精度的情况下,有效的提高了配准的速度。
With the development of technology, power network data acquisition based on UAV aerial photo-graphy and laser scanning plays an increasingly important role in power network construction, especially in power line patrol and tree barrier analysis. At the same time, with the updating of data acquisition equipment, the number of point cloud data points is also growing. Aiming at the problem that the data volume is too large during the registration of dense matched point clouds or LiDAR point clouds, a voxel-based point cloud simplification method is proposed in this paper. The point cloud is simplified by representing the voxel by its barycenter computed from the point cloud. The fast registration of tower data is realized by combining the simplified point cloud with the fast point feature histogram (FPFH) algorithm and the iterative nearest neighbor point algorithm (ICP). Experimental results show that this method can effectively improve the registration speed without losing the registration accuracy.

References

[1]  王庆闪, 张军, 刘元盛, 张鑫晨. 基于NDT与ICP结合的点云配准算法[J]. 计算机工程与应用, 2019, 1-12.
[2]  成煜钤, 何熹, 贾东峰, 赵磊. 基于权值的散乱点云压缩算法[J]. 河南科学, 2019, 37(7): 1145-1151.
[3]  孙大林, 唐好选. 路面点云的并行简化研究[J]. 智能计算机与应用, 2019, 9(4): 307-312.
[4]  吴俊秀, 陈桂芬, 李岳, 朱海忱. 点云配准RANSAC算法研究改进[J]. 长春理工大学学报(自然科学版), 2019, 42(3): 65-69.
[5]  呼延嘉玥, 徐立军, 李小路. 自研激光雷达三维点云配准技术[J]. 北京航空航天大学学报, 2019, 1-8.
[6]  范哲君. 散乱点云自动配准算法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2019.
[7]  赵鸿凯, 张凯云, 沈小华. 基于三维虚拟现实的历史街景重现技术[J]. 科学技术与工程, 2018, 18(25): 200-205.
[8]  刘剑, 白迪. 基于特征匹配的三维点云配准算法[J]. 光学学报, 2018, 38(12): 240-247.
[9]  杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10): 1509-1516.
[10]  陈学伟, 朱耀麟, 武桐, 王祖全. 基于SAC-IA和改进ICP算法的点云配准技术[J]. 西安工程大学学报, 2017, 31(3): 395-401.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133