|
Material Sciences 2020
丝素蛋白/纳米羟基磷灰石复合材料的制备及3D打印成型研究
|
Abstract:
针对单一羟基磷灰石制成的骨件易碎、强度差等问题,采用共沉淀法用桑蚕丝和无机盐制备了丝素蛋白(SF)与纳米羟基磷灰石(HA)的复合材料。采用扫描电镜(SEM)、傅立叶红外光谱、X射线衍射(XRD)对复合材料的结构进行表征。采用3D打印的方式将复合材料打印成型,并进行了抗压强度测试。结果表明:此方法得到的HA/SF复合材料粒径约为20~50 nm,长度约为80~120 nm,具有一定的长轴取向性,丝素蛋白与羟基磷灰石复合弱化了羟基磷灰石的结晶状态。骨修复材料的成型可以通过3D打印来实现,成型后其抗压强度可达到52 MPa,可以满足人体骨的强度要求。
A composite material of silk fibroin (SF) and nano-hydroxyapatite (HA) was prepared by co-precipitation method using mulberry silk and inorganic salt to solve the problem of brittle fracture and low toughness of single hydroxyapatite. The composite material was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR) and X-ray diffraction (XRD). The tensile tests of the composites which were printed via three-dimension printer were done. The results show that the size of the HA/SF is about 20 - 50 nm. The length of the nano-particles with long axis orientation is about 80 - 120 nm. The crystalline state of HA was weakened by the SF in HA/SF. HA/SF scaffolds were printed by three-dimension printer. Via adding nanocellulose disperses solution into the HA/SF composite, the compressive strength of HA/SF scaffolds can be 52 MPa which can be satisfied with the demand of body bone. The composite scaf-folds have uniform pores compared to those scaffolds obtained by foaming, freeze-drying, etc. The size of pores is about 250 - 350 μm. The suitable concentration of nanocellulose disperses solution to help to form and increase toughness is 3%. The ratio of HA/SF and nanocellulose is 1:2. So HA/SF composite can be a suitable bone repair material. Three-dimensional printing is an ideal process to manufacture bone scaffolds efficiently.
[1] | Lang, H., Mertens, T. and Gerlack, K.L. (1989) Re Implantation Homologous Cultured Osteoblast for Improvement of Bone Regeneration. An Animal Study. International Journal of Oral and Maxillofacial Surgery, 18, 244-248. https://doi.org/10.1016/S0901-5027(89)80064-5 |
[2] | Wang, Q.T., Zhang, Y.M., Hu, N.S., et al. (2004) Micro-structure Analysis of Fractured Ti Alloy Implant. Rare Metal Materials and Engineering, 33, 442-444. |
[3] | Wen, C.E., Mabuchi, M., Yamada, Y., et al. (2001) Processing of Bio-Compatible Porous Ti and Mg. Scripta Materialia, 45, 1147-1153. https://doi.org/10.1016/S1359-6462(01)01132-0 |
[4] | 陈斌, 彭向和, 范镜泓. 生物自然复合材料的结构特征及仿生复合材料的研究[J]. 复合材料学报, 2000, 17(3): 59-62. |
[5] | Kikuchi, M., Matsumoto, H.N., Yamada, T., et al. (2004) Glutaraldehyde Cross-Linked Hydroxyapatite/Collagen Self-Organized Nanocomposites. Biomaterials, 25, 63-69. https://doi.org/10.1016/S0142-9612(03)00472-1 |
[6] | Yasunaga, T., Matsusue, Y., Shikinami, Y., et al. (2015) Bonding Behavior of Ultrahigh Strength Unsintered Hydroxyapatite Particles/Poly(L-lactide) Composites to Surface of Tibial Cortex in Rabbits. Journal of Biomedical Materials Research, 47, 412-419. https://doi.org/10.1002/(SICI)1097-4636(19991205)47:3<412::AID-JBM17>3.0.CO;2-B |
[7] | Thein-Han, W.W. and Misra, R.D. (2009) Biomimetic Chitosan-Nanohydroxyapatite Composite Scaffolds for Bone Tissue Engineering. Acta Biomaterialia, 5, 1182-1197. https://doi.org/10.1016/j.actbio.2008.11.025 |
[8] | Gil, E.S., Frankowski, D.J., Hudson, S.M., et al. (2007) Multiporous Silk Fibroin Membranes from Solvent-Crystallized Silk Fibroin/Gelatin Blends: Effects of Blend and Solvent Composition. Materials Science and Engineering: C, 27, 426-431. https://doi.org/10.1016/j.msec.2006.05.017 |
[9] | Kundua, B., Rajkhowa, R., Kundu, S.C., et al. (2013) Silk Fibroin Biomaterials for Tissue Regenerations. Advanced Drug Delivery Reviews, 65, 457-470. https://doi.org/10.1016/j.addr.2012.09.043 |
[10] | Pooyan, P., Tannenbaum, R. and Garmestani, H. (2012) Mechanical Behavior of a Cellulose-Reinforced Scaffold in Vascular Tissue Engineering, Journal of the Mechanical Behavior of Biomedical Materials, 7, 50-59. https://doi.org/10.1016/j.jmbbm.2011.09.009 |
[11] | Kim, U.J., Park, J., Li, C., Jin, H.J., et al. (2004) Structure and Properties of Silk Hydrogels. Biomacromolecules, 5, 786-792. https://doi.org/10.1021/bm0345460 |
[12] | Yunoki, S., Ikoma, T., Monkawa, A., et al. (2006) Control of Pore Structure and Mechanical Property in Hydroxyapatite Scaffolds for Bone Tissue Engineering. Materials Letters, 60, 999-1002. https://doi.org/10.1016/j.matlet.2005.10.064 |
[13] | Wahl, D.A., Sachlos, E., Liu, C., et al. (2007) Con-trolling the Processing of Collagen-Hydroxyapatite Scaffolds for Bone Tissue Engineering. Journal of Materials Science: Materials in Medicine, 18, 201-209. https://doi.org/10.1007/s10856-006-0682-9 |
[14] | 贺超良, 汤朝晖, 田华雨, 等. 3D打印技术制备生物医用高分子材料的研究进展[J]. 高分子学报, 2013, 52(6): 722-732. |
[15] | Leong, K.F., Cheah, C.M. and Chua, C.K. (2003) Solid Freeform Fabrication of Three-Dimensional Scaffolds for Engineering Replacement Tissues and Organs. Biomaterials, 24, 2363-2378. https://doi.org/10.1016/S0142-9612(03)00030-9 |
[16] | Kim, U.-J., Park, J., Kim, H.J., et al. (2005) Three-Dimensional Aqueous-Derived Biomaterial Scaffolds from Silk Fibroin. Biomaterials, 26, 2775-2785. https://doi.org/10.1016/j.biomaterials.2004.07.044 |
[17] | Wang, Y.Z., Rudym, D.D., Walsh, A., et al. (2008) In Vivo Degradation of Three-Dimensional Silk Fibroin Scaffolds. Biomaterials, 29, 3415-3428. https://doi.org/10.1016/j.biomaterials.2008.05.002 |
[18] | Jones, J.R., Ahir, S. and Hench, L.L. (2004) Large-Scale Pro-duction of 3D Bioactive Glass Macroporous Scaffolds for Tissue Engineering. Journal of Sol-Gel Science and Tech-nology, 29, 179-188. https://doi.org/10.1023/B:JSST.0000023848.96123.8e |
[19] | 姚菊明, 魏克民, 励丽, 等. 桑蚕丝素蛋白初始结构对其矿化作用的影响[J]. 化学学报, 2007, 65(7): 635-639. |
[20] | Ping, Z., Xun, X., Knight, D.P., et al. (2004) Effects of PH and Calcium Ions on the Conformational Transitions in Silk Fibroin Using 2D Roman Correlation Spectroscopy and C-13 Solid-State NMR. Biochemistry, 43, 11302-11311. https://doi.org/10.1021/bi049344i |
[21] | 陆旋, 朱正华. 家蚕丝素蛋白铜元素螯合物的制备及其对动物生理影响研究[J]. 蚕桑通报, 2005, 36(3): 16-20. |
[22] | 江捍平, 王大平, 阮建明, 等. 纳米羟基磷灰石人工骨的毒性与细胞相容性实验研究[J]. 中国医学工程, 2005, 10(5): 458-461. |
[23] | 霍波, 翟勇, 崔福斋. 蚕丝中蛋白构象含量与其力学性质间的关系[J]. 高分子学报, 2002, 3(3): 261-264. |
[24] | 王佳倍, 胡建恩, 白雪芳, 等. 蚕丝素蛋白及其应用[J]. 精细与专用化学品, 2004, 12(12): 13-18. |
[25] | 肖斌, 周大利, 杨为中, 等. 磷灰石-硅灰石/β磷酸三钙复合多孔材支架材料的制备和表征[J]. 无机材料学报, 2006, 21(2): 427-432. |