全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于图像的振动筛物料状态检测方法
Image Based Detection Method of Vibrating Screen Materials’ Existence

DOI: 10.12677/JISP.2020.91007, PP. 57-64

Keywords: 图像处理,开运算,Canny边缘检测,累计概率霍夫变换,支持向量机
Image Processing
, Open Operation, Canny Edge Detection, Cumulative Probability Hough Transform, Support Vector Machine

Full-Text   Cite this paper   Add to My Lib

Abstract:

振动筛筛面物料的疏密状态可以作为判断上层旋流器设备堵塞的辅助手段。采用图像处理的方法,使用振动筛筛面网格直线作为检测特征,以支持向量机分类器作为判别方法,设计了一种振动筛物料状态检测算法,利用计算机自动检测辅助人工监控,以及时发现堵塞情况,并减少疏漏。本文首先对总体算法思路进行了阐述;采用开运算与Canny边缘检测强化图像中的直线特征;然后使用基于累计概率霍夫变换的直线检测提取振动筛筛面上的特征直线;最后利用支持向量机作为分类器对提取到的特征进行准确分类。实验结果表明,本文方法能够有效地识别图像中振动筛筛面上物料状态,识别准确率达到97.38%。
The density sparsity of material in the screen of the vibrating screen can be used as an auxiliary mean for judging the blockage of the cyclone. The image processing method is adopted, the vibrating screen mesh lines are used as the detection feature, and the SVM method is utilized to design a vibrating screen material detection algorithm. Computer automatic detection is used to assist manual monitoring, aiming to find congestion and reduce omissions. In this paper, the overall algorithm is described, and the idea of the algorithm is clarified. The opening operation and Canny edge detection in the algorithm play a role in enhancing features. Then the line detection based on the cumulative probability Hough transform is used to extract feature lines on the sieve surface. Finally, the SVM (Support Vector Machine) is utilized as a classifier to accurately classify the extracted features. The experimental results show that the method can effectively identify the presence and absence of materials on the vibrating screen surface, and the recognition accuracy reaches 97.38%.

References

[1]  袁会康, 朱泽建, 张保健. 无压三产品重介旋流器二段入料口堵塞报警系统的研究与应用[J]. 煤矿现代化, 2019(1): 93-95.
[2]  王然风, 高建川, 付翔. 智能化选煤厂架构及关键技术[J]. 工矿自动化, 2019, 45(7): 28-32.
[3]  王芳. 选煤厂信息化系统与安全监控系统的应用[J]. 煤炭加工与综合利用, 2019(2): 72-74 + 77.
[4]  郭春宇. 网络视频监控系统在选煤厂中的应用[J]. 数字通信世界, 2018(6): 153 + 282.
[5]  Um, H., Tixier, F., Bermudez, D., Deasy, J.O., Young, R.J. and Veeraraghavan, H. (2019) Impact of Image Preprocessing on the Scanner Dependence of Multi-Parametric MRI Radiomic Features and Covariate Shift in Multi-Institutional Glioblastoma Datasets. Physics in Medicine and Biology, 64, Article ID: 165011.
https://doi.org/10.1088/1361-6560/ab2f44
[6]  周旭廷, 王桂丽, 傅赟, 侯雪鹏. 基于MATLAB的数字图像去噪处理[J]. 计算机系统应用, 2016, 25(11): 270-273.
[7]  刘天辉. 车辆视觉导航中道路检测算法研究[C]//中共沈阳市委员会、沈阳市人民政府、中国汽车工程学会. 第十一届沈阳科学学术年会暨中国汽车产业集聚区发展与合作论坛论文集(信息科学与工程技术分册). 中共沈阳市委员会, 沈阳市人民政府, 中国汽车工程学会, 沈阳市科学技术协会, 2014: 5.
[8]  李运生, 张名佳. 智能交通静态目标自动识别系统的研究[J]. 现代电子技术, 2018, 41(15): 141-146.
[9]  赵吉广. 基于视频图像的路面性能参数采集方法研究[D]: [博士学位论文]. 南京: 东南大学, 2006.
[10]  Yu, Z., Zhang, W., Kumar, B.V.K., et al. (2015) Structured Hough Voting for Vision-Based Highway Border Detection. In: IEEE Winter Conference on Applications of Computer Vision, IEEE, Piscataway, 246-253.
https://doi.org/10.1109/WACV.2015.40
[11]  Boser, B.E., Guyon, I.M. and Vapnik, V.N. (1992) A Training Algorithm for Optimal Margin Classifier. Workshop on Computational Learning Theory, July 1992, 144-152.
https://doi.org/10.1145/130385.130401
[12]  Cortes, C. and Vapnik, V. (1995) Support-Vector Networks. Machine Learning, 20, 273-297.
https://doi.org/10.1007/BF00994018
[13]  Vapnik, V.N. (2003) Statistical Learning Theory. Annals of the Institute of Statistical Mathematics, 55, 371-389.
https://doi.org/10.1007/BF02530506
[14]  丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2-10.
[15]  张龙波, 李智远, 杨习贝, 王怡博. 决策代价约简求解中的交叉验证策略[J]. 南京大学学报(自然科学), 2019, 55(4): 601-608.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133