全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物转录因子研究方法
Research Method of Transcription Factors in Plant

DOI: 10.12677/BR.2020.91003, PP. 25-30

Keywords: 植物转录因子,转录调控,蛋白质与蛋白质互作,靶基因与蛋白质互作
Plant Transcription Factor
, Transcription Control, Protein-Protein Interaction, Target Gene-Protein Interaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物转录因子可以调控众多下游基因的表达,在植物的生长发育、响应外界环境刺激等方面起着重要的调控作用。随着转录因子在模式植物和作物中基因转录调控的研究不断深入,转录因子研究方法也在持续创新。我们主要从蛋白质与蛋白质互作和靶基因与蛋白质互作这2个方面阐述植物转录因子研究方法,为植物转录因子的相关研究提供参考方法。蛋白质与蛋白质互作的方法主要有:酵母双杂交系统、荧光共振能量转移技术、双分子荧光互补技术、下拉实验和免疫共沉淀技术;靶基因与蛋白质互作的方法主要有:酵母单杂交系统、染色质免疫沉淀技术、凝胶电泳迁移技术和荧光素酶报告系统。
Plant transcription factors regulate the expression of vast downstream genes and play an important role in the regulation of plant growth and development, as well as its response to environment. With the development of transcription factors in model plants and crops, the research methods of transcription factors are also being innovated. We describe the research methods of plant transcription factors from two aspects: protein-protein interaction and target gene-protein interaction, so as to provide a reference method for the related research of plant transcription factors. Protein-protein interaction methods include: yeast two-hybrid system, fluorescence resonance energy transfer, bimolecular fluorescence complementation, pull down and co-immunoprecipitation; methods for target gene-protein interaction include: yeast one-hybrid system, chromatin immunoprecipitation, electrophoretic mobility shift assay and luciferase reporter assay.

References

[1]  刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用[J]. 科学通报, 2000, 45(14): 1465-1474.
[2]  Liu, L., White, M.J. and MacRae, T.H. (1999) Transcription Factors and Their Genes in Higher Plants. European Journal of Biochemistry, 262, 247-257.
https://doi.org/10.1046/j.1432-1327.1999.00349.x
[3]  Paz-Ares, J., Ghosal, D., Wienand, U., et al. (1987) The Regulatory c1 Locus of Zea mays Encodes a Protein with Homology to Myb Pro-to-Oncogene Products and with Structural Similarities to Transcriptional Activators. The EMBO Journal, 6, 3553-3558.
https://doi.org/10.1002/j.1460-2075.1987.tb02684.x
[4]  Jin, J., Tian, F., Yang, D.C., et al. (2017) Plant TFDB 4.0: Toward a Central Hub for Transcription Factors and Regulatory Interactions in Plants. Nucleic Acids Research, 45, 1040-1045.
https://doi.org/10.1093/nar/gkw982
[5]  Singh, K., Foley, R.C. and Onate-Sanchez, L. (2002) Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology, 5, 430-436.
https://doi.org/10.1016/S1369-5266(02)00289-3
[6]  Seo, E., Choi, D. and Choi (2015) Functional Studies of Transcription Factors Involved in Plant Defenses in the Genomics Era. Briefings in Functional Genomics, 14, 260-267.
https://doi.org/10.1093/bfgp/elv011
[7]  Fields, S. and Song, O. (1989) A Novel Genetic System to Detect Protein-Protein Interactions. Nature, 340, 245-246.
https://doi.org/10.1038/340245a0
[8]  Cowell, I.G. (1997) Yeast Two-Hybrid Library Screening. Methods in Molecular Biology, 69, 185-202.
https://doi.org/10.1385/0-89603-383-X:185
[9]  Stasi, M., De Luca, M. and Bucci, C. (2015) Two-Hybrid-Based Systems: Powerful Tools for Investigation of Membrane Traffic Machineries. Journal of Biotechnology, 202, 105-117.
https://doi.org/10.1016/j.jbiotec.2014.12.007
[10]  Chien, C.T., Bartel, P.L., Sternglanz, R. and Fields, S. (1991) The Two-Hybrid System: A Method to Identify and Clone Genes for Proteins That Interact with a Protein of Interest. Proceedings of the National Academy of Sciences of the United States of America, 88, 9578-9582.
https://doi.org/10.1073/pnas.88.21.9578
[11]  Reece-Hoyes, J.S., Barutcu, A.R., McCord, R.P., et al. (2011) Yeast One-Hybrid Assays for Gene-Centered Human Gene Regulatory Network Mapping. Nature Methods, 8, 1050-1052.
https://doi.org/10.1038/nmeth.1764
[12]  Reece-Hoyes, J.S. and Marian Walhout, A.J. (2012) Yeast One-Hybrid Assays: A Historical and Technical Perspective. Methods, 57, 441-447.
https://doi.org/10.1016/j.ymeth.2012.07.027
[13]  Petschnigg, J., Groisman, B., Kotlyar, M., et al. (2014) The Mammalian-Membrane Two-Hybrid Assay (MaMTH) for Probing Membrane-Protein Interactions in Human Cells. Nature Methods, 11, 585-592.
https://doi.org/10.1038/nmeth.2895
[14]  Bajar, B.T., Wang, E.S., Zhang, S., et al. (2016) A Guide to Fluorescent Protein FRET Pairs. Sensors (Basel, Switzerland), 16, pii: E1488.
https://doi.org/10.3390/s16091488
[15]  Breusegem, S.Y., Levi, M. and Barry, N.P. (2006) Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging Microscopy. Nephron. Experimental Nephrology, 103, 41-49.
https://doi.org/10.1159/000090615
[16]  Kenworthy, A.K. and Edidin, M. (1998) Distribution of a Glycosylphosphatidylinositol-Anchored Protein at the Apical Surface of MDCK Cells Examined at a Resolution of < 100 A Using Imaging Fluorescence Resonance Energy Transfer. The Journal of Cell Biology, 142, 69-84.
https://doi.org/10.1083/jcb.142.1.69
[17]  Zal, T. and Gascoigne, N.R. (2004) Photobleaching-Corrected FRET Efficiency Imaging of Live Cells. Biophysical Journal, 86, 3923-3939.
https://doi.org/10.1529/biophysj.103.022087
[18]  Zadran, S., Standley, S., Wong, K., et al. (2012) Fluorescence Resonance Energy Transfer (FRET)-Based Biosensors: Visualizing Cellular Dynamics and Bioenergetics. Applied microbiology and Biotechnology, 96, 895-902.
https://doi.org/10.1007/s00253-012-4449-6
[19]  Bucherl, C.A., Bader, A., Westphal, A.H., et al. (2014) FRET-FLIM Applications in Plant Systems. Protoplasma, 251, 383-394.
https://doi.org/10.1007/s00709-013-0595-7
[20]  Miller, K.E., Kim, Y., Huh, W.K. and Park, H.O. (2015) Bimolecular Fluorescence Complementation (BiFC) Analysis: Advances and Recent Applications for Genome-Wide Interaction Studies. Journal of Molecular Biology, 427, 2039-2055.
https://doi.org/10.1016/j.jmb.2015.03.005
[21]  Schafer, F., Seip, N., Maertens, B., et al. (2015) Purification of GST-Tagged Proteins. Methods in Enzymology, 559, 127-139.
https://doi.org/10.1016/bs.mie.2014.11.005
[22]  Lin, J.S. and Lai, E.M. (2017) Protein-Protein Interactions: Co-Immunoprecipitation. Methods in Molecular Biology, 1615, 211-219.
https://doi.org/10.1007/978-1-4939-7033-9_17
[23]  Mundade, R., Ozer, H.G., Wei, H., et al. (2014) Role of ChIP-seq in the Discovery of Transcription Factor Binding Sites, Differential Gene Regulation Mechanism, Epigenetic Marks and Beyond. Cell Cycle (Georgetown, Tex.), 13, 2847-2852.
https://doi.org/10.4161/15384101.2014.949201
[24]  Bannister, A.J. and Kouzarides, T. (1992) Basic Peptides Enhance Protein/DNA Interaction in Vitro. Nucleic Acids Research, 20, 3523.
https://doi.org/10.1093/nar/20.13.3523
[25]  Gould, S.J. and Subramani, S. (1988) Firefly Luciferase as a Tool in Molecular and Cell Biology. Analytical Biochemistry, 175, 5-13.
https://doi.org/10.1016/0003-2697(88)90353-3
[26]  耿德玉, 原媛, 郭华荣. 双荧光素酶报告基因系统的应用研究进展[J]. 科技资讯, 2012(21): 1.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133