全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于先验医学知识的风险预测模型
A Risk Prediction Model Based on Prior Medical Knowledge

DOI: 10.12677/HJDM.2020.101003, PP. 30-38

Keywords: 电子健康记录,深度学习,先验医学知识
Electronic Health Record
, Deep Learning, Prior Medical Knowledge

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过电子健康记录预测潜在疾病风险任务是近年来医疗领域的研究热点。随着机器学习研究与应用的快速发展,经典机器学习模型渐渐无法满足日益增长的数据量和复杂的数据分析需求,而深度学习中神经网络模型可以解决机器学习无法解决或难以解决的问题。现有疾病预测工作中没有对先验医学知识的明确考虑。本文提出了一种新的、通用的框架,称为风险预测任务,它可以使用后验正则化技术成功地将离散的先验医学知识应用到所有最先进的预测模型中。本文以卷积神经网络建立风险预测模型,并加入先验医学知识,以梯度下降算法进行优化。实验证明,与传统深度学习中的卷积神经网络相比该模型能有效提高风险预测的准确率。
The task of predicting potential disease risks through electronic health records is a hot research topic in the medical field in recent years. With the rapid development of machine learning research and application, the classical machine learning model is gradually unable to meet the growing data volume and complex data analysis needs, while the neural network model in deep learning can solve the problem that machine learning cannot or is difficult to solve. There is no explicit consider-ation of prior medical knowledge in existing disease prediction work. We propose a new, generic framework called the risk prediction task, which successfully applies discrete prior medical knowledge to all the most advanced prediction models using posterior regularization techniques. In this paper, the convolution neural network is used to establish the risk prediction model, and prior medical knowledge is added. Gradient descent algorithm was used for optimization. Experiments prove that this model can effectively improve the accuracy of risk prediction compared with the convolution neural network in traditional deep learning.

References

[1]  Lin, L. (2007) Analysis of Electronic Medical Record and Related Concepts. China Medical Record, No. 4, 40-41.
[2]  Birkhead, G.S., Klompas, M. and Shah, N.R. (2015) Uses of Electronic Health Records for Public Health Surveillance to Advance Public Health. Annual Review of Public Health, 36, 345-359.
https://doi.org/10.1146/annurev-publhealth-031914-122747
[3]  The Office of the National Coordinator for Health Information Technology (2016) Adoption of Electronic Health Record Systems among U.S. Non-Federal Acute Care Hospitals: 2008-2015.
[4]  刘艺聪, 张婷婷, 张紫君, 等. 标准化护理语言在电子健康记录中的应用现状[J]. 中国实用护理杂志, 2019, 35(9): 717-721.
[5]  Li, S.R. (2014) A Retrospective Analysis of the Prevalence and Risk Factors of CKD in Type 2 Diabetes Mellitus Patients Based on Minhang District Electronic Health Record (EHR) Plat-form. Fudan University, Shanghai.
[6]  Ferr?o, J.C., Janela, F., Oliveira, M.D., et al. (2013) Using Structured EHR Data and SVM to Support ICD-9-CM Coding. IEEE International Conference on Healthcare Informatics, Philadelphia, 9-11 September 2013, 511-516.
https://doi.org/10.1109/ICHI.2013.79
[7]  Karlsson, I. and Bostrom, H. (2015) Handling Sparsity with Random Forests When Predicting Adverse Drug Events from Electronic Health Records. IEEE International Conference on Healthcare Informatics, Verona, 15-17 September 2014, 17-22.
https://doi.org/10.1109/ICHI.2014.10
[8]  唐雯, 高峻逸, 马辛宇, 等. 循环神经网络模型在腹膜透析临床预后预测中的初步应用[J]. 北京大学学报(医学版), 2019(3): 602-608.
[9]  Shickel, B., Tighe, P.J., Bihorac, A., et al. (2017) Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE Journal of Biomedical & Health Infor-matics, 22, 1589-1604.
https://doi.org/10.1109/JBHI.2017.2767063
[10]  Ganchev, K., Gra?a, J. Gillenwater, J., et al. (2010) Posterior Regularization for Structured Latent Variable Models. Journal of Machine Learning Research, 11, 2001-2049.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133