全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

溶剂退火制备高质量MA3Bi2I9钙钛矿薄膜与太阳能电池
Solvent Annealing for High Quality MA3Bi2I9 Perovskite Thin Films and Solar Cells

DOI: 10.12677/MS.2020.101005, PP. 31-39

Keywords: 无铅,钙钛矿,蒸镀法,气氛处理,太阳能电池
Lead Free
, Perovskite, Evaporation, Atmosphere Treatment, Solar Cell

Full-Text   Cite this paper   Add to My Lib

Abstract:

与铅钙钛矿太阳能电池相比,铋基钙钛矿太阳能电池在无毒性和稳定性方面表现出很好的优势。在(CH3NH3)3Bi2I9钙钛矿太阳能电池的研究中,光吸收层薄膜的质量严重制约着电池的光电转化效率。本研究在两步蒸镀与掺氯的基础上,采用DMF气氛退火处理,获得了高致密、无孔洞且大晶粒的(CH3NH3)3Bi2I9薄膜。该处理减少了薄膜内部缺陷,增强薄膜光吸收,增加载流子寿命。与未处理的薄膜相比,电池的光电转换效率提升了52.9%。本研究为钙钛矿薄膜质量的优化以及器件性能的提升提供了可行的解决方案。
Bismuth based perovskite solar cells possess the features of non-toxicity and high stability, which are considered as two significant factors in the emerging perovskite solar cells. The quality of the light absorption layer has a remarkable impact on the conversion efficiency of (CH3NH3)3Bi2I9 per-ovskite solar cells. Herein, (CH3NH3)3Bi2I9 thin films with features of highly compact, pinhole-free and large grains were prepared by procedures of two-step evaporation, chlorine doping and an-nealing under a DMF atmosphere. The DMF solvent annealing can diminish the internal defects of thin-film, and thereby enhances the absorbance as well as prolonging the life time of charge carries. The conversion efficiency shows dramatic enhancement by 52.9% compared with the solar cells from thin-films without DMF annealing. This work provides insights into the (CH3NH3)3Bi2I9 per-ovskite solar cells with optimized thin-film quality and improved device performance.

References

[1]  Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organometal Halide Perovskites as Visible-Light Sensi-tizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051.
https://doi.org/10.1021/ja809598r
[2]  Kim, M., Kim, G.-H., Lee, T.K., Choi, I.W., Choi, H.W., Jo, Y., Yoon, Y.J., Kim, J.W., Lee, J., Huh, D., Lee, H., Kwak, S.K., Kim, J.Y. and Kim, D.S. (2019) Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule, 3, 2179-2192.
https://doi.org/10.1016/j.joule.2019.06.014
http://www.sciencedirect.com/science/article/pii/S2542435119303058
[3]  Li, X., Liu, Y., Eze, V.O., Mori, T., Huang, Z., Homewood, K.P., Gao, Y. and Lei, B. (2019) Amorphous Na-noporous WOx Modification for Stability Enhancement and Hysteresis Reduction in TiO2-Based Perovskite Solar Cells. Solar Energy Materials and Solar Cells, 196, 157-166.
https://doi.org/10.1016/j.solmat.2019.03.040
http://www.sciencedirect.com/science/article/pii/S092702481930159X
[4]  Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Li, X., Yin, Z. and You, J. (2019) Surface Passivation of Perovskite Film for Efficient Solar Cells. Nature Photonics, 13, 460-466.
https://doi.org/10.1038/s41566-019-0398-2
[5]  Gao, P., Gr?tzel, M. and Nazeeruddin, M.K. (2014) Organohalide Lead Perovskites for Photovoltaic Applications. Energy & Environmental Science, 7, 2448-2463.
https://doi.org/10.1039/C4EE00942H
[6]  Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H. and Kanatzidis, M.G. (2014) Lead-Free Solid-State Organic-Inorganic Halide Perovskite Solar Cells. Nature Photonics, 8, 489-494.
https://doi.org/10.1038/nphoton.2014.82
[7]  Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M. and Snaith, H.J. (2014) Lead-Free Organic-Inorganic Tin Halide Perovskites for Photovoltaic Applications. Energy & Environmental Science, 7, 3061-3068.
https://doi.org/10.1039/C4EE01076K
[8]  Park, B.-W., Philippe, B., Zhang, X., Rensmo, H., Boschloo, G. and Johansson, E.M.J. (2015) Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application. Advanced Materials, 27, 6806-6813.
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201501978
https://doi.org/10.1002/adma.201501978
[9]  Zhao, Z., Gu, F., Li, Y., Sun, W., Ye, S., Rao, H., Liu, Z., Bian, Z. and Huang, C. (2017) Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. Advanced Science, 4, Article ID: 1700204.
https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.201700204
https://doi.org/10.1002/advs.201700204
[10]  Wang, F., Ma, J., Xie, F., Li, L., Chen, J., Fan, J. and Zhao, N. (2016) Organic Cation-Dependent Degradation Mechanism of Organotin Halide Perovskites. Advanced Functional Materials, 26, 3417-3423.
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201505127
https://doi.org/10.1002/adfm.201505127
[11]  Vigneshwaran, M., Ohta, T., Iikubo, S., Kapil, G., Ripolles, T.S., Ogomi, Y., Ma, T., Pandey, S.S., Shen, Q., Toyoda, T., Yoshino, K., Minemoto, T. and Hayase, S. (2016) Facile Syn-thesis and Characterization of Sulfur Doped Low Bandgap Bismuth Based Perovskites by Soluble Precursor Route. Chemistry of Materials, 28, 6436-6440.
https://doi.org/10.1021/acs.chemmater.6b02315
[12]  Lehner, A.J., Fabini, D.H., Evans, H.A., Hébert, C.-A., Smock, S.R., Hu, J., Wang, H., Zwanziger, J.W., Chabinyc, M.L. and Seshadri, R. (2015) Crystal and Electronic Structures of Complex Bismuth Iodides A3Bi2I9 (A = K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics. Chemistry of Materials, 27, 7137-7148.
https://doi.org/10.1021/acs.chemmater.5b03147
[13]  Lyu, M., Yun, J.-H., Cai, M., Jiao, Y., Bernhardt, P.V., Zhang, M., Wang, Q., Du, A., Wang, H., Liu, G. and Wang, L. (2016) Organic-Inorganic Bismuth (III)-Based Material: A Lead-Free, Air-Stable and Solution-Processable Light-Absorber beyond Organolead Perovskites. Nano Research, 9, 692-702.
https://doi.org/10.1007/s12274-015-0948-y
[14]  Kulkarni, A., Singh, T., Ikegami, M. and Miyasaka, T. (2017) Photovoltaic Enhancement of Bismuth Halide Hybrid Perovskite by N-methyl Pyrrolidone-Assisted Morphology Conversion. RSC Advances, 7, 9456-9460.
https://doi.org/10.1039/C6RA28190G
[15]  Jain, S.M., Phuyal, D., Davies, M.L., Li, M., Philippe, B., De Castro, C., Qiu, Z., Kim, J., Watson, T., Tsoi, W.C., Karis, O., Rensmo, H., Boschloo, G., Edvinsson, T. and Durrant, J.R. (2018) An Effective Approach of Vapour Assisted Morphological Tailoring for Reducing Metal Defect Sites in Lead-Free, (CH3NH3)3Bi2I9 Bismuth-Based Perovskite Solar Cells for Improved Performance and Long-Term Stability. Nano Energy, 49, 614-624.
http://www.sciencedirect.com/science/article/pii/S2211285518303197
https://doi.org/10.1016/j.nanoen.2018.05.003
[16]  Lan, C., Luo, J., Zhao, S., Zhang, C., Liu, W., Hayase, S. and Ma, T. (2017) Effect of Lead-Free (CH3NH3)3Bi2I9 Perovskite Addition on Spectrum Absorption and Enhanced Pho-tovoltaic Performance of Bismuth Triiodide Solar Cells. Journal of Alloys and Compounds, 701, 834-840.
https://doi.org/10.1016/j.jallcom.2017.01.169
http://www.sciencedirect.com/science/article/pii/S0925838817301925
[17]  Ran, C., Wu, Z., Xi, J., Yuan, F., Dong, H., Lei, T., He, X. and Hou, X. (2017) Construction of Compact Me-thylammonium Bismuth Iodide Film Promoting Lead-Free Inverted Planar Heterojunction Organohalide Solar Cells with Open-Circuit Voltage over 0.8 V. The Journal of Physical Chemistry Letters, 8, 394-400.
https://doi.org/10.1021/acs.jpclett.6b02578
[18]  Abulikemu, M., Ould-Chikh, S., Miao, X., Alarousu, E., Murali, B., Ngongang Ndjawa, G.O., Barbé, J., El Labban, A., Amassian, A. and Del Gobbo, S. (2016) Optoelectronic and Photovoltaic Properties of the Air-Stable Organohalide Semiconductor (CH3NH3)3Bi2I9. Journal of Materials Chemistry A, 4, 12504-12515.
https://doi.org/10.1039/C6TA04657F
[19]  Mali, S.S., Kim, H., Kim, D.-H. and Kook Hong, C. (2017) Anti-Solvent Assisted Crystallization Processed Methylammonium Bismuth Iodide Cuboids towards Highly Stable Lead-Free Perovskite Solar Cells. Chemistry Select, 2, 1578-1585.
https://onlinelibrary.wiley.com/doi/abs/10.1002/slct.201700025
https://doi.org/10.1002/slct.201700025
[20]  Zhang, X., Wu, G., Gu, Z., Guo, B., Liu, W., Yang, S., Ye, T., Chen, C., Tu, W. and Chen, H. (2016) Active-Layer Evolution and Efficiency Improvement of (CH3NH3)3Bi2I9-Based Solar Cell on TiO2-Deposited ITO Substrate. Nano Research, 9, 2921-2930.
https://doi.org/10.1007/s12274-016-1177-8
[21]  Zhang, Z., Li, X., Xia, X., Wang, Z., Huang, Z., Lei, B. and Gao, Y. (2017) High-Quality (CH3NH3)3Bi2I9 Film-Based Solar Cells: Pushing Efficiency up to 1.64%. The Journal of Physical Chemistry Letters, 8, 4300-4307.
https://doi.org/10.1021/acs.jpclett.7b01952
[22]  李晓伟, 刘艳领, Homewood, K.P., 黄忠兵, 高云, 雷丙龙. 两步蒸镀法制备高质量(CH3NH3)3Bi2I9钙钛矿薄膜[J]. 材料科学, 2019(9): 115.
[23]  Lee, L.C., Huq, T.N., MacManus-Driscoll, J.L. and Hoye, R.L.Z. (2018) Research Update: Bis-muth-Based Perovskite-Inspired Photovoltaic Materials. APL Materials, 6, Article ID: 084502.
https://aip.scitation.org/doi/abs/10.1063/1.5029484
https://doi.org/10.1063/1.5029484

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133