全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不确定多状态变时滞广义Lurie切换系统的鲁棒无源控制
Robust Passive Control of Uncertain Singular Lurie Switched Systems with Multiple Time-Varying Delays

DOI: 10.12677/DSC.2020.91005, PP. 50-61

Keywords: 多状态变时滞,广义Lurie切换系统,不确定性,有记忆反馈控制器,LMI
Multiple Time-Varying Delays
, Singular Lurie Switched System, Uncertainty, Memory Feedback Controller, LMI

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文在基于Lyapunov-Krasovskii泛函、Schur补引理及矩阵不等式方法下,讨论了一类具有不确定性多状态变时滞广义Lurie切换系统,在切换状态反馈策略下,得到了使不确定多状态变时滞Lurie切换广义系统能够渐近稳定且严格无源存在的充分性判据,为系统的综合提供了可行性判据。设计了具有记忆的反馈控制器,为系统的稳定性分析及控制器的综合提供了更多的自由度,最后的结果转化为线性矩阵不等式给出,通过数值仿真,验证了定理的有效性和实用性。
This paper considers the issues of the switching state strategy memory feedback for a class of uncertain Singular Lurie switched systems with multiple time-varying delays. Under the circumstances of a state-based switching law, and based on the Lyapunov-Krasovskii functional techniques, Schur complement lemma, and linear matrix inequality, the sufficient conditions are given for the asymptotic stability and strictly passive of uncertain switched singular systems with multiple time-varying delays. Meanwhile, robust passive controllers for each subsystem under the switching law are designed. It is believed that controller with memory should provide more freedom for robust stability analysis and synthesis controller for the systems. In the final, the results are given in the form of linear matrix inequalities (LMIs). And the validity of the conclusion is shown by numerical examples.

References

[1]  付主木, 费树岷, 高爱云. 切换系统的H∞控制[M]. 北京: 科学出版社, 2009: 1-200.
[2]  Xiong, W.J., Ho, D.W. and Cao, J.D. (2008) Synchronization Analysis of Singular Hybrid Coupled Networks. Physics Letters, 372, 6633-6637.
https://doi.org/10.1016/j.physleta.2008.09.030
[3]  Liberzon, D. and Morse, A.S. (1999) Basic Problems in Stability and Design of Switched. IEEE Control Systems Magazine, 19, 59-70.
https://doi.org/10.1109/37.793443
[4]  Lee, J., Bohacek, S., Hespanha, J., et al. (2007) Modeling Communication Networks with Hybrid Systems. IEEE/ACM Transactions on Networking, 15, 630-643.
https://doi.org/10.1109/TNET.2007.893090
[5]  Lee, T.H., Ji, D.H., Park, J.H., et al. (2012) Decentralized Guaranteed Cost Dynamic Control for Synchronization of a Complex Dynamical Network with Randomly Switching Topology. Applied Mathematics and Computation, 219, 996-1010.
https://doi.org/10.1016/j.amc.2012.07.004
[6]  Lin, X.Z., Du, H.B., Li, S.H., et al. (2013) Finite-Time Stability and Finite-Time Weighted L2-Gain Analysis for Switched Systems with Time-Varying Delay. IET Control Theory and Applications, 7, 1058-1069.
https://doi.org/10.1049/iet-cta.2012.0551
[7]  Valdivia, V., Todd, R., Rebecca, F.J., et al. (2014) Behavioral Modeling of a Switched Reluctance Generator for Aircraft Power Systems. IEEE Transactions on Industrial Electronics, 61, 2690-2699.
https://doi.org/10.1109/TIE.2013.2276768
[8]  Wang, Y.E., Sun, X.M., Shi, P., et al. (2013) Input-to-State Stability of Switched Nonlinear Systems with Time Delays under Asynchronous Switching. IEEE Transactions on Cybernetics, 43, 2261-2265.
https://doi.org/10.1109/TCYB.2013.2240679
[9]  高在瑞, 纪志成. 一类切换时滞系统奇异系统的最优保成本控制[J]. 系统工程与电子技术, 2011, 33(6): 1358-1361.
[10]  Lin, J.X., Fei, S.M. and Wu, Q. (2012) Reliable H∞ Filtering for Discrete-Time Switched Singular Systems with Time-Varying Delay. Circuits, Systems, and Singular Processing, 31, 1191-1214.
https://doi.org/10.1007/s00034-011-9361-2
[11]  尹玉娟, 赵军. 具有脉冲作用的切换线性广义系统的稳定性[J]. 自动化学报, 2007, 33(4): 446-448.
[12]  付主木, 费树岷. 一类不确定切换奇异系统的动态输出反馈鲁棒H∞控制[J]. 自动化学报, 2008, 34(4): 482-487.
[13]  Makarenkov, O. (2019) A Linear State Feedback Switching Rule for Global Stabilization of Switched Nonlinear Systems about a Nonequilibrium Point. European Journal of Control, 49, 62-67.
https://doi.org/10.1016/j.ejcon.2019.02.001
[14]  付主木, 费树岷. 一类切换线性奇异系统的H∞控制[J]. 控制理论与应用, 2008, 25(4): 693-698.
[15]  Ma, S.P., Zhang, C.H. and Wu, Z. (2008) Delay-Dependent Stability and Control for Uncertain Discrete Switched Singular Systems with Time-Delay. Applied Mathematics and Computation, 206, 413-424.
https://doi.org/10.1016/j.amc.2008.09.020
[16]  Xie, X.S. (2009) Convergence Criteria of Solutions for a Class of Switched Linear Singular Systems with Time Delay. International Conference on Natural Computation, Tianjin, 14-16 August 2009, 495-499.
https://doi.org/10.1109/ICNC.2009.404
[17]  张霞, 高岩, 夏尊铨. 切换线性系统的稳定性研究进展[J]. 控制与决策, 2010, 25(10): 1441-1450.
[18]  杨冬梅, 陈珊珊. 不确定多状态切换广义系统的鲁棒无源控制[J]. 东北大学学报: 自然科学版, 2018, 39(2): 297-300.
[19]  包春霞, 包俊东. 基于动态输出反馈控制器的变时滞Lurie不确定系统的鲁棒H∞控制[J]. 内蒙古师范大学学报, 2018, 47(3): 185-189.
[20]  史书慧. 切换广义系统的H∞输出反馈控制[J]. 控制工程, 2013, 20(2): 357-361.
[21]  李明侠, 刘玉忠. 非线性多时滞切换系统的稳定性[J]. 沈阳师范大学学报: 自然科学版, 2016, 34(1): 18-22.
[22]  Zong, G.D. and Zhao, H.J. (2018) Input-to-State Stability of Switched Nonlinear Delay Systems Based on a Novel Lyapunov-Krasovskii Functional Method. Journal of Systems Science & Complexity, 31, 875-888.
https://doi.org/10.1007/s11424-018-6237-6
[23]  Platonov, A.V. (2019) On the Problem of Nonlinear Stabilization of Switched Systems. Circuits, Systems, and Signal Processing, 38, 3996-4013.
https://doi.org/10.1007/s00034-019-01048-7
[24]  Li, S., Guo, J. and Xiang, Z. (2019) Global Stabilization of a Class of Switched Nonlinear Systems under Sampled-Data Control. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49, 1912-1919.
https://doi.org/10.1109/TSMC.2018.2836930
[25]  Wang, R., Xing, J. and Xiang, Z. (2018) Finite-Time Stability and Stabilization of Switched Nonlinear Systems with Asynchronous Switching. Applied Mathematics and Computation, 316, 229-244.
https://doi.org/10.1016/j.amc.2017.08.017
[26]  Stephen, B., Laurent, E.G., Eric, F., et al. (1994) Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, Philadelphia, 1-187.
[27]  俞立. 鲁棒控制——线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002: 1-272.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133