全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青岛滨海环境温湿度作用与混凝土内部温湿度响应
Temperature and Relative Humidity Response of Concrete in Marine Environment of Qingdao

DOI: 10.12677/HJCE.2019.810172, PP. 1473-1482

Keywords: 海洋环境,混凝土内部温度响应,混凝土内部湿度,干湿循环制度
Marine Environment
, Temperature Response of Concrete, Relative Humidity Response of Concrete, Dry-Wet Cycle

Full-Text   Cite this paper   Add to My Lib

Abstract:

国内外研究人员往往在实验室通过干湿循环试验,研究氯离子在混凝土内部的传输规律。然而,不同研究人员采用的干湿比和干燥温度差异性非常大,导致不同加速制度下的试验结果无法对比,室内加速试验与暴露试验的相关性也没有达成共识。本文通过实测青岛滨海环境温湿度作用和混凝土内部温度和湿度响应,为合理设置室内加速试验制度提供依据。研究发现:浪溅区混凝土内部的温度受潮高、大气温度和太阳辐射的影响变化趋势与大气温度有明显差异,呈现三类典型的变化规律。潮汐区混凝土内部的温度响应具有明显的季节性特征。冬季,高潮位混凝土内部温度低于低潮位混凝土内部温度。其他季节,高潮位混凝土内部温度高于低潮位混凝土内部温度。水下区混凝土内部温度与海水温度基本一致。浪溅区混凝土表层0~10 mm范围以内相对湿度基本维持在95%以上,混凝土表面下25 mm及更深处混凝土基本处于饱和状态。水下区、潮汐区混凝土内部也基本上处于饱和状态。建议室内干湿循环试验干湿比为1:5~5:1。在进行室内加速试验的过程中,不建议将混凝土试块烘干,否则将改变混凝土内部的氯离子传输机理,与实际不符。亟需建立统一的室内加速试验制度,并给出加速系数。
Researchers always studied migration mechanism of chloride into concrete through drying-wet cycle test in laboratory. However, dry-wet ratio and drying temperature used by different re-searchers are totally different, which leads to the incomparability of test results under different acceleration regimes, and there is no consensus on the correlation relationship between acce-leration test and exposure test. In this paper, the temperature and relative humidity response of concrete under marine environment of Qingdao are measured, which provides a basis for set-ting up accelerated test regimes. Results showed that the temperature response of concrete in the splash zone is obviously different from that of air, which shows three typical changing rules. The temperature response of concrete in tidal zone has obvious seasonal characteristics. In winter, the temperature of concrete in high tide area is lower than that of low tide concrete. In other seasons, the internal temperature of high tide concrete is higher than that of concrete in low tide area. The temperature of concrete in underwater area is basically the same as that of seawater. The relative humidity of the concrete in the splash zone is above 95% within 0 - 10 mm, and the concrete at 25 mm and deeper is almost saturated. The concrete in underwater area and tidal area is almost saturated. It is suggested that the dry-wet ratio of accelerated test is 1:5 - 5:1. In the process of accelerated test, it is not recommended to dry the concrete into un-saturated condition, otherwise the migration mechanism of chloride into concrete will be changed, which is inconsistent with reality. It is urgent to establish unified accelerated test re-gimes which can reflect the real situation of chloride penetration into concrete and the coeffi-cient of acceleration is also needed.

References

[1]  侯保荣, 路东柱. 我国腐蚀成本及其防控策略[J]. 中国科学院院刊, 2018, 33(6): 601-609.
[2]  延永东, 金伟良, 王海龙, 等. 干湿交替作用下氯离子在开裂混凝土中的输运规律[J]. 中南大学学报(自然科学版), 2013, 44(5): 2060-2067.
[3]  Yin, S., Jing, L., Yin, M., et al. (2019) Mechanical Properties of Textile Reinforced Concrete under Chloride Wet-Dry and Freeze-Thaw Cycle Environments. Cement and Concrete Composites, 96, 118-127.
https://doi.org/10.1016/j.cemconcomp.2018.11.020
[4]  姜硕. 干湿循环下混凝土氯离子传输与饱和度研究[D]: [硕士学位论文]. 舟山: 浙江海洋大学, 2018.
[5]  刘倩, 申向东, 薛慧君, 等. 氯盐侵蚀和干湿循环条件下浮石混凝土的耐久性[J]. 农业工程学报, 2018, 34(21): 137-143.
[6]  徐港, 李运攀, 王谊敏, 等. 干湿交替环境下氯离子在承压混凝土内的传输特性[J]. 建筑材料学报, 2015, 18(5): 727-732.
[7]  张奕, 姚昌建, 金伟良. 干湿交替区域混凝土中氯离子分布随高程的变化规律[J]. 浙江大学学报(工学版), 2009, 43(2): 360-365.
[8]  彭智. 干湿循环与荷载耦合作用下氯离子侵蚀混凝土模型研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2010.
[9]  王琴. 干湿循环下桥梁混凝土抗氯离子侵蚀试验分析[J]. 混凝土, 2017(9): 20-22.
[10]  Ghazy, A. and Bassuoni, M.T. (2017) Resistance of Concrete to Different Exposures with Chloride-Based Salts. Cement and Concrete Research, 101, 144-158.
https://doi.org/10.1016/j.cemconres.2017.09.001
[11]  Alsaif, A., Bernal, S.A., Guadagnini, M., et al. (2018) Durability of Steel Fibre Reinforced Rubberised Concrete Exposed to Chlorides. Construction and Building Materials, 188, 130-142.
https://doi.org/10.1016/j.conbuildmat.2018.08.122
[12]  吕健, 余亮, 龙海波, 等. 复杂环境下钢筋混凝土抗盐侵蚀性能[J]. 混凝土与水泥制品, 2017(12): 23-26.
[13]  Jeedigunta, G.V. (1998) Accelerated Durability Testing of Reinforced and Unreinforced Concretes in a Simulated Marine Environment.
[14]  Kawaai, K., Nishida, T., Saito, A., et al. (2019) Corrosion Resistance of Steel Bars in Mortar Mixtures Mixed with Organic Matter, Microbial or Other. Cement and Concrete Research, 124, Article ID: 105822.
https://doi.org/10.1016/j.cemconres.2019.105822
[15]  袁智强, 庞森, 叶英华, 等. 海水干湿环境下荷载损伤钢筋混凝土梁的氯扩散性[J]. 混凝土, 2017(6): 60-63.
[16]  沈骏, 袁梦, 闫敏, 等. 海洋环境下干湿循环对结构混凝土性能影响的研究现状、存在问题及其发展趋势[J]. 硅酸盐通报, 2017, 36(6): 1929-1938.
[17]  Tittarelli, F., Mobili, A., Giosue, C., et al. (2018) Corrosion Behaviour of Bare and Galvanized Steel in Geopolymer and Ordinary Portland Cement Based Mortars with the Same Strength Class Exposed to Chlorides. Corrosion Science, 134, 64-77.
[18]  Wu, J., Zhang, R., Diao, B., et al. (2019) Effects of Pre-Fatigue Damage on High-Cycle Fatigue Behavior and Chloride Permeability of RC Beams. International Journal of Fatigue, 122, 9-18.
https://doi.org/10.1016/j.ijfatigue.2019.01.002
[19]  谭靖, 唐川江, 陈浩, 等. 干湿循环作用对非饱和锂渣混凝土氯离子扩散性能的影响[J]. 河南科技大学学报(自然科学版), 2019, 40(1): 72-77 + 8-9.
[20]  李永强, 巴明芳, 柳俊哲, 等. 干湿循环作用下水泥基复合材料抗氯离子侵蚀性能及其微观结构变化[J]. 复合材料学报, 2017, 34(12): 2856-2865.
[21]  刘奇东, 刘荣桂, 姜慧, 等. 海洋干湿交替区混凝土结构的人工气候模拟加速试验设计[J]. 混凝土, 2013(11): 50-52 + 67.
[22]  Zhang, J., Guo, J., Li, D., et al. (2017) The Influence of Admixture on Chloride Time-Varying Diffusivity and Microstructure of Concrete by Low-Field NMR. Ocean Engineering, 142, 94-101.
https://doi.org/10.1016/j.oceaneng.2017.06.065
[23]  李春秋, 李克非. 干湿交替下表层混凝土中氯离子传输: 原理、试验和模拟[J]. 硅酸盐学报, 2010, 38(4): 581-589.
[24]  樊友煌, 余红发, 张云清. 干湿循环对混凝土在高浓度卤水中氯离子扩散行为的影响[J]. 盐湖研究, 2007(1): 49-54.
[25]  Chen, F., Gao, J., Qi, B., et al. (2017) Degradation Progress of Concrete Subject to Combined Sulfate-Chloride Attack under Drying-Wetting Cycles and Flexural Loading. Construction and Building Materials, 151, 164-171.
https://doi.org/10.1016/j.conbuildmat.2017.06.074
[26]  黄俊, 张俊芝, 吴灵杰, 等. 干湿循环条件下混凝土氯离子侵蚀的模拟试验及相似性[J]. 混凝土, 2012(12): 4-5 + 8.
[27]  Xu, J., Qi, W., Peng, S, et al. (2012) Error of Saturation Vapor Pressure Calculated by Different Formulas and Its Effect on Calculation of Reference Evapotranspiration in High Latitude Cold Region. Procedia Engineering, 28, 43-48.
https://doi.org/10.1016/j.proeng.2012.01.680
[28]  张鹏. 水泥基材料内部水分运动的可视化成像追踪及其规律研究[D]: [博士学位论文]. 青岛: 青岛理工大学, 2010.
[29]  朱方之, 赵铁军, 王鹏刚, 等. 混凝土毛细吸水影响因素探讨[J]. 西安建筑科技大学学报: 自然科学版, 2012, 44(5): 627-631.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133