全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钙信号调控植物低温胁迫的分子机制研究进展
Regulation of Ca2+ in Plant Response Mechanisms under Cold Stress

DOI: 10.12677/HJAS.2019.912167, PP. 1173-1179

Keywords: 钙信号,低温胁迫,植物,应答机制
Ca2+ Signaling
, Cold Stress, Plant, Regulatory Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

低温冷害是最为严重的自然灾害之一。低温冷害抑制植物的生长发育,全世界范围内每年因0℃以上的低温冷害造成的作物经济损失达数千亿元。因此研究植物的低温胁迫适应机理,提高其低温抗性不仅具有十分重要的科学意义,而且有着更为重要的现实价值。Ca2+作为重要的第二信使不仅参与调控植物的生长发育过程,还参与调控各种生物与非生物胁迫应答。本文重点论述了Ca2+调控植物低温胁迫应答的分子机制。
Cold stress presents one of the major limitations for plant growth, development and yield world-wide, as well as distribution, especially in areas of north and high-latitude regions. Worldwide, the annual crop economic losses due to the low temperature above 0?C is amount to hundreds billions of yuan. So an investigation of responses mechanism of cold stress in plant and improvement of its resistance has significant important value. Ca2+ acts as the second messenger coupling of extracellular signals and intracellular physiological response. It plays an important role in mediating plant growth and development, as well as involved in the regulation of various abiotic stresses. The review discusses the molecular mechanism of Ca2+ regulating cold stress in plant.

References

[1]  Chinnusamy, V., Zhu, J.K. and Sunkar, R. (2010) Gene Regulation during Cold Stress Acclimation in Plants. In: Sunkar, R., Ed., Plant Stress Tolerance, Springer, Heidelberg, 39-55.
https://doi.org/10.1007/978-1-60761-702-0_3
[2]  Zhang, Z.Y., Li, J.J., Pan, Y.H., Li, J.L., Zhou, L., Shi, H.L., Zeng, Y.W., Guo, H.F., Yang, S.M., Zheng, W.W., Yu, J.P., Sun, X.M., Li, G.L., Ding, Y.L., Ma, L., Shen, S.Q., Dai, Y.L., Zhang, H.L., Yang, S.H., Guo, Y. and Li, Z.C. (2017) Natural Variation in CTB4a Enhances Rice Adaptation to Cold Habitats. Nature Communications, 8, Article No. 14788.
https://doi.org/10.1038/ncomms14788
[3]  Dodd, A.N., Kudla, J. and Sanders, D. (2010) The Language of Calcium Signaling. Annual Review of Plant Biology, 61, 593-620.
https://doi.org/10.1146/annurev-arplant-070109-104628
[4]  Reddy, A.S., Ali, G.S., Celesnik, H., et al. (2011) Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression. Plant Cell, 23, 2010-2032.
https://doi.org/10.1105/tpc.111.084988
[5]  Kleist, T.J. and Luan, S. (2016) Constant Change: Dy-namic Regulation of Membrane Transport by Calcium Signalling Networks Keeps Plants in Tune with Their Environment. Plant Cell and Environment, 39,467-481.
https://doi.org/10.1111/pce.12599
[6]  Nordin, H.K. and Trewavas, A. (2003) The Effect of Short-Term Low-Temperature Treatments on Gene Expression in Arabidopsis Correlates with Changes in Intracellular Ca2+ Levels. Plant, Cell & Environment, 26, 485-496.
https://doi.org/10.1046/j.1365-3040.2003.00979.x
[7]  Wilkins, K.A., Matthus, E., Swarbreck, S.M., et al. (2016) Calcium-Mediated Abiotic Stress Signaling in Roots. Fronts in Plant Science, 7, 1296.
https://doi.org/10.3389/fpls.2016.01296
[8]  Sulaiman, Y., Knight, M.R. and Kataky, R. (2012) Non-Invasive Monitoring of Temperature Stress in Arabidopsis thaliana Roots, Using Ion Amperometry. Analytical Methods, 4, 1656-1661.
https://doi.org/10.1039/c2ay05747f
[9]  Xiong, L., Lee, B., Ishitani, M., et al. (2001) FIERY1 Encod-ing an Inositol Polyphosphate 1-Phosphatase Is a Negative Regulator of Abscisic Acid and Stress Signaling in Ara-bidopsis. Gene Development, 15, 1971-1984.
https://doi.org/10.1101/gad.891901
[10]  Catala, R., Santos, E., Alonso, J.M., et al. (2003) Mutations in the Ca2+/H+ Transporter CAX1 Increase CBF/DREB1 Expression and the Cold-Acclimation Response in Arabidopsis. Plant Cell, 15, 2940-2951.
https://doi.org/10.1105/tpc.015248
[11]  Jha, S.K., Sharma, M. and Pandey, G.K. (2016) Role of Cyclic Nucleotide Gated Channels in Stress Management in Plants. Current Genomics, 17, 315-329.
https://doi.org/10.2174/1389202917666160331202125
[12]  Nawaz, Z., Kakar, K.U., Saand, M.A., et al. (2014) Cyclic Nucleotide-Gated Ion Channel Gene Family in Rice, Identification, Characterization and Experimental Analysis of Expression Response to Plant Hormones, Biotic and Abiotic Stresses. BMC Genomics, 15, 853.
https://doi.org/10.1186/1471-2164-15-853
[13]  Ma, Y., Dai, X., Xu, Y., et al. (2015) COLD1 Confers Chilling Tolerance in Rice. Cell, 160, 1209-1221.
https://doi.org/10.1016/j.cell.2015.01.046
[14]  Hashimoto, K. and Kudla, J. (2011) Calcium Decoding Mechanisms in Plants. Biochimie, 93, 2054-2059.
https://doi.org/10.1016/j.biochi.2011.05.019
[15]  Ormancey, M., Thuleau, P., Mazars, C., et al. (2017) CDPKs and 14-3-3 Proteins: Emerging Duo in Signaling. Trends in Plant Science, 22, 263-272.
https://doi.org/10.1016/j.tplants.2016.11.007
[16]  Luan, L. (2009) The CBL-CIPK Network in Plant Calcium Sig-naling. Trends in Plant Science, 14, 37-42.
https://doi.org/10.1016/j.tplants.2008.10.005
[17]  Sanyal, S.K., Rao, S., Mishra, L.K., et al. (2016) Plant Stress Responses Mediated by CBL-CIPK Phosphorylation Network. Enzymes, 40, 31-64.
https://doi.org/10.1016/bs.enz.2016.08.002
[18]  Zhu, J.K. (2016) Abiotic Stress Signaling and Responses in Plants. Cell, 167, 313-324.
https://doi.org/10.1016/j.cell.2016.08.029
[19]  Chen, X.J., Huang, Q.S., Zhang, F., et al. (2014) ZmCIPK21, a Maize CBL-Interacting Kinase, Enhances Salt Stress Tolerance in Arabidopsis thaliana. International Journal of Molec-ular Sciences, 15, 14819-14834.
https://doi.org/10.3390/ijms150814819
[20]  Hu, D.G., Ma, Q.J., Sun, C.H., et al. (2016) Overexpression of MdSOS2L1, a CIPK Protein Kinase, Increases the Antioxidant Metabolites to Enhance Salt Tolerance in Apple and To-mato. Physiologia Plantarum, 156, 201-214.
https://doi.org/10.1111/ppl.12354
[21]  Pandey, G.K., Kanwar, P., Singh, A., et al. (2015) Calcineurin B-Like Pro-tein-Interacting Protein Kinase CIPK21 Regulates Osmotic and Salt Stress Responses in Arabidopsis. Plant Physiology, 169, 780-792.
https://doi.org/10.1104/pp.15.00623
[22]  Luo, Q., Wei, Q., Wang, R., et al. (2017) BdCIPK31, a Calcineurin B-Like Protein-Interacting Protein Kinase, Regulates Plant Response to Drought and Salt Stress. Frontiers in Plant Sci-ence, 8, 1184.
https://doi.org/10.3389/fpls.2017.01184
[23]  Kim, K.N., Lee, J.S., Han, H., et al. (2003) Isolation and Characteri-zation of a Novel Rice Ca2+-Regulated Protein Kinase Gene Involved in Responses to Diverse Signals Including Cold, Light, Cytokinins, Sugars and Salts. Plant Molecular Biology, 52, 1191-1202.
https://doi.org/10.1023/B:PLAN.0000004330.62660.a2
[24]  Xiang, Y., Huang, Y. and Xiong, L. (2007) Charac-terization of Stress-Responsive CIPK Genes in Rice for Stress Tolerance Improvement. Plant Physiology, 144, 1416-1428.
https://doi.org/10.1104/pp.107.101295
[25]  Huang, C.L., Ding, S., Zhang, H., et al. (2011) CIPK7 Is Involved in Cold Response by Interacting with CBL1 in Arabidopsis thaliana. Plant Science, 181, 57-64.
https://doi.org/10.1016/j.plantsci.2011.03.011
[26]  Deng, X.M., Zhou, S.Y., Hu, W., et al. (2013) Ectopic Expres-sion of Wheat TaCIPK14, Encoding a Calcineurin B-Like Protein-Interacting Protein Kinase, Confers Salinity and Cold Tolerance in Tobacco. Physiologia Plantarum, 149, 367-377.
https://doi.org/10.1111/ppl.12046
[27]  Yang, T., Shad Ali, G., Yang, L., et al. (2010) Calcium/Calmodulin-Regulated Receptor-Like Kinase CRLK1 Interacts with MEKK1 in Plants. Plant Signal Behavior, 5, 991-994.
https://doi.org/10.4161/psb.5.8.12225
[28]  Teige, M., Scheikl, E., Eulgem, T., et al. (2004) The MKK2 Pathway Mediates Cold and Salt Stress Signaling in Arabidopsis. Mo-lecular Cell, 15, 141-152.
https://doi.org/10.1016/j.molcel.2004.06.023
[29]  Sangwan, V., Orvar, B.L., Beyerly, J., et al. (2002) Opposite Changes in Membrane Fluidity Mimic Cold and Heat Stress Activation of Distinct Plant MAP Ki-nase Pathways. Plant Journal, 31, 629-638.
https://doi.org/10.1046/j.1365-313X.2002.01384.x
[30]  Furuya, T., Matsuoka, D. and Nanmori, T. (2014) Mem-brane Rigidification Functions Upstream of the MEKK1-MKK2-MPK4 Cascade during Cold Acclimation in Arabidopsis thaliana. FEBS Letters, 588, 2025-2030.
https://doi.org/10.1016/j.febslet.2014.04.032
[31]  Doherty, C.J., Van Buskirk, H.A., Myers, S.J. and Thomashow, M.F. (2009) Roles for Arabidopsis CAMTA Transcription Factors in Cold-Regulated Gene Expression and Freezing Tolerance. Plant Cell, 21, 972-984.
https://doi.org/10.1105/tpc.108.063958
[32]  丁杨林, 施怡婷, 杨淑华. 植物响应低温胁迫的分子机制研究[J]. 生命科学, 2015, 27(3): 398-405.
[33]  Chinnusamy, V., Zhu, J. and Zhu, J.K. (2007) Cold Stress Regulation of Gene Expression in Plants. Trends Plant Science, 12, 444-451.
https://doi.org/10.1016/j.tplants.2007.07.002
[34]  Qin, F., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2011) Achievements and Challenges in Understanding Plant Abiotic Stress Responses and Tolerance. Plant Cell Physiology, 52, 1569-1582.
https://doi.org/10.1093/pcp/pcr106
[35]  Shi, Y.T., Ding, Y.L. and Yang, S.H. (2015) Cold Signal Transduction and Its Interplay with Phytohormones during Cold Accli-mation. Plant Cell Physiology, 56, 7-15.
https://doi.org/10.1093/pcp/pcu115
[36]  Feng, X.M., Zhao, Q., Zhao, L.L., et al. (2012) The Cold-Induced Basic Helix-Loop-Helix Transcription Factor Gene MdCIbHLHl Encodes an ICE-Like Protein in Apple. BMC Plant Biology, 12, 22.
https://doi.org/10.1186/1471-2229-12-22
[37]  Zhao, M.L., Wang, J.N., Shan, W., et al. (2013) Induction of Jasmonate Signalling Regulators MaMYC2s and Their Physical Interactions with MalCEl in Methyl Jasmonate-Induced Chilling Tolerance in Banana Fruit. Plant Cell and Environment, 36, 30-51.
https://doi.org/10.1111/j.1365-3040.2012.02551.x
[38]  Shi, Y., Tian, S., Hou, L., Huang, X., Zhang, X., Guo, H. and Yang, S. (2012) Ethylene Signaling Negatively Regulates Freezing Tolerance by Repressing Expression of CBF and Type-A ARR Genes in Arabidopsis. Plant Cell, 24, 2578-2595.
https://doi.org/10.1105/tpc.112.098640
[39]  Ding, Y., Li, H., Zhang, X., et al. (2015) OST1 Kinase Modulates Freezing Tolerance by Enhancing ICE1 Stability in Ara-bidopsis. Developmental Cell, 32, 278-289.
https://doi.org/10.1016/j.devcel.2014.12.023
[40]  Liu, Z., Jia, Y., Ding, Y., et al. (2017) Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response. Molecular Cell, 66, 117-128.
https://doi.org/10.1016/j.molcel.2017.02.016
[41]  Li, H., Ding, Y., Shi, Y., et al. (2017) MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis. Developmental Cell, 43, 1-13.
https://doi.org/10.1016/j.devcel.2017.09.025

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133