|
基于粒子群算法的深度置信网络焙烧过程可溶锌率预测
|
Abstract:
[1] | Lee, T.S. and Mumford, D. (2003) Hierarchical Bayesian Inference in the Visual Cortex. Journal of the Optical Society of America, 20, 1434-1448. |
[2] | 潘广源, 柴伟, 乔俊飞. DBN网络的深度确定方法[J]. 控制与决策, 2015, 30(2): 256-260. |
[3] | Hinton, G.E. and Salakhutdinov, R.R. (2006) Reducing the Dimensionality of Data with Neural Net-works. Science, 313, 504-507. https://doi.org/10.1126/science.1127647 |
[4] | Dahl, G.E., Yu, D., Deng, L. and Ac-ero, A. (2011) Large Vocabulary Continuous Speech Recognition with Context-Dependent DBN-HMMS. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011, Prague Congress Center, Prague, 22-27 May 2011, 4688-4691.
https://doi.org/10.1109/ICASSP.2011.5947401 |
[5] | 徐春华, 陈克绪, 马建, 刘佳翰, 吴建华. 基于深度置信网络的电力负荷识别[J]. 电工技术学报, 2019, 34(19): 4135-4142. |
[6] | 毛勇华, 代兆胜, 桂小林. 一种改进的5层深度学习结构与优化方法[J]. 计算机工程, 2018, 44(6): 147-150. |
[7] | Wang, Y.B., You, Z.H., Li, X., et al. (2017) Predicting Protein-Protein Interactions from Protein Sequences by a Stacked Sparse Autoencoder Deep Neural Network. Molecular Biosystems, 13, 1336-1344.
https://doi.org/10.1039/C7MB00188F |
[8] | Liu, F., Jiao, L.C., Hou, B. and Yang, S.Y. (2016) POL-SAR Image Classification Based on Wishart DBN and Local Spatial Information. IEEE Transactions on Geoscience & Remote Sens-ing, 54, 1-17.
https://doi.org/10.1109/TGRS.2016.2514504 |
[9] | Kong, W., Zhao, Y.D., Hill, D.J., Luo, F. and Xu, Y. (2018) Short-Term Residential Load Forecasting Based on Resident Behaviour Learning. IEEE Transactions on Power Systems, 33, 1087-1088.
https://doi.org/10.1109/TPWRS.2017.2688178 |
[10] | Li, B.-Q., He, Y.-Y., Guo, Y.-S. and Qiu, Y. (2017) Auto-matic Interpretation Algorithm for Tunnel Geological Prediction Based on DBN. Journal of Chang’an University (Natu-ral Science Edition), 37, 90-96. |
[11] | 高月, 宿翀, 李宏光. 一类基于非线性PCA和深度置信网络的混合分类器及其在PM2.5浓度预测和影响因素诊断中的应用[J]. 自动化学报, 2018, 44(2): 318-329. |
[12] | Zhou, S.Z.S., Chen, Q.C.Q. and Wang, X.W.X. (2010) Discriminative Deep Belief Networks for Image Classification. 2010 IEEE Interna-tional Conference on Image Processing, Hong Kong, 26-29 September 2010, 1561-1564.
https://doi.org/10.1109/ICIP.2010.5649922 |
[13] | 张媛媛, 霍静, 杨婉琪, 等. 深度信念网络的二代身份证异构人脸核实算法[J]. 智能系统学报, 2015, 10(2): 193-200. |
[14] | 朱乔木, 党杰, 陈金富, 徐友平, 李银红, 段献忠. 基于深度置信网络的电力系统暂态稳定评估方法[J]. 中国电机工程学报, 2018, 38(3): 735-743. |
[15] | 张楠, 丁世飞, 张健, 赵星宇. 基于噪声数据与干净数据的深度置信网络[J]. 软件学报, 2019, 30(11): 3326-3339. |
[16] | Lv, Y., Duan, Y., Kang, W., Li, Z. and Wang, F.-Y. (2015) Traffic Flow Prediction With Big Data: A Deep Learning Ap-proach. IEEE Transactions on Intelligent Transportation Systems, 16, 865-873. |
[17] | 许冬. 复杂锌精矿沸腾焙烧预测神经网络研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2008. |
[18] | Shen, F., Chao, J. and Zhao, J. (2015) Forecasting Exchange Rate Using Deep Belief Networks and Conjugate Gradient Method. Neurocomputing, 167, 243-253. https://doi.org/10.1016/j.neucom.2015.04.071 |
[19] | 张国辉. 基于深度置信网络的时间序列预测方法及其应用研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2017. |