全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

章村伊利石矿中主要粘土矿物的微观形貌特征及成因分析
Microscopic Morphological Characteristics of Main Clay Minerals in Zhangcun Illite Ores and Their Genetic Type Analysis

DOI: 10.12677/AG.2020.102008, PP. 62-68

Keywords: 扫描电镜,章村,粘土矿物,沉积改造,热液作用
SEM
, Zhangcun, Clay Minerals, Sedimentation Reformation, Hydrothermal Process

Full-Text   Cite this paper   Add to My Lib

Abstract:

使用高分辨率扫描电镜和图像分析技术对章村伊利石矿中主要粘土矿物的微观形貌特征进行了研究。结果表明:1) 伊利石的镜下形貌一般呈弯曲的鳞片状,也有的呈叶片状;2) 伊/蒙混层矿物主要有带状薄片,片状边缘有丝状,部分呈尖角直边的鳞片状;3) 叶腊石多呈鳞片状,有的呈板片环绕而成的空心管状;4) 蛇纹石呈明显的波形褶皱的细小片状;5) 绿泥石主要呈玫瑰花朵状。结合该伊利石矿的地质条件和地质背景,依据各种粘土矿物的微观形貌特征对它们的成因类型进行了分析,分析结果表明:该伊利石矿中伊利石矿物为沉积改造型伊利石;叶腊石、蛇纹石与绿泥石是受热液作用控制而形成;伊/蒙混层矿物为伊利石向蒙脱石转化过程中所形成的产物。
The microscopic morphological characteristics of main clay minerals in Zhangcun illite ores were studied by using high-resolution scanning electron microscopic (SEM) and image analysis tech-nology. The results show that: 1) the illites generally appear as crooked scaly and foliated partly; 2) illite/smectite (I/S) mixed layered minerals are banding flake with filamentous edge mostly and cusp type flake partly; 3) pyrophyllite appears to be flake and tabular sheet forming hollow pipe; 4) serpentinite is obviously fine flake with wavy shape; 5) chlorite appears as rose flower-like. The genetic types of main clay minerals were analyzed according to their microscopic morphological characteristics combining with geological conditions and geological background of study area. It is concluded that illite is sedimentation reformation type; the formation of pyrophyllite, serpentinite and chlorite were controlled by hydrothermal process and the I/S mixed layered mineral is transitional product during the transformation from illite to smectite.

References

[1]  任磊夫. 粘土矿物与粘土岩[M]. 北京: 地质出版社, 1992.
[2]  Khoury, H.N. (2019) Review of Clays and Clay Minerals in Jordan. Arabian Journal of Geosciences, 12, 706.
https://doi.org/10.1007/s12517-019-4882-2
[3]  张慧, 李小彦, 郝琦, 等. 中国煤的扫描电子显微镜研究[M]. 北京: 地质出版社, 2003.
[4]  高瑞祺, 孔庆云, 幸国强, 等. 石油地质试验手册[M]. 哈尔滨: 黑龙江科学技术出版社, 1992.
[5]  亦然, 徐国盛, 刘勇, 等. 西湖凹陷西次凹花港组致密砂岩储层成岩环境与孔隙演化[J]. 成都理工大学学报(自然科学版), 2020, 47(1): 35-49.
[6]  黎盼. 低渗透砂岩储层微观孔隙结构表征及生产特征分析[D]: [博士学位论文]. 西安: 西北大学, 2019.
[7]  陈丽华. 扫描电镜在地质上的应用[M]. 北京: 科学出版社, 1986.
[8]  周剑雄. 矿物微区分析概论[M]. 北京: 地质出版社, 1980.
[9]  杨雅秀. 中国粘土矿物[M]. 北京: 地质出版社, 1994.
[10]  韩德馨. 中国煤田地质学[M]. 北京: 煤炭工业出版社, 1980.
[11]  朱继存. 蛇纹石的物质成分特征和利用[J]. 石材, 2000(12): 33-35.
[12]  焦玉国. 伊利石结晶度指数在岩石变质程度研究中的应用[J]. 大庆石油地质与开发, 2005, 24(1): 41-44.
[13]  刘玲, 汤达祯, 王烽. 鄂尔多斯盆地临兴区块太原组致密砂岩黏土矿物特征及其对储层物性的影响[J]. 油气地质与采收率, 2019, 26(6): 28-35.
[14]  赵杏媛. 粘土矿物与粘土矿物分析[M]. 北京: 海洋出版社, 1990.
[15]  Drits, V.A. and Derkowski, A. (2015) Kinetic Behavior of Partially Dehydroxylated Kaolinite. American Mineralogist, 100, 883-896.
https://doi.org/10.2138/am-2015-5083
[16]  张天乐, 王宗良. 中国粘土矿物的电子显微研究[M]. 北京: 地质出版社, 1978.
[17]  Weaver, C.E. (1956) The Distribution and Identification of Mixed-Layer Clays in Sedimentary Rocks. American Mineralogist, 41, 202-221.
[18]  Hower, J., Eslinger, E., Hower, M., et al. (1976) The Mechanism of Burial Diagenetic Reaction in Argillaceous Sediments, I. Mincrallogical and Chemical Evidence. Geological Society of America Bulletin, 87, 725-737.
https://doi.org/10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2
[19]  Burst, J.F. (1958) Glauconite Pellets: Their Mineral Nature and Applications for Stratigraphic Interpretations. The American Association of Petroleum Geologists Bulletin, 42, 310-327. https://doi.org/10.1306/0BDA5A7D-16BD-11D7-8645000102C1865D
[20]  宋青春, 张振春. 地质学基础[M]. 北京: 高等教育出版社, 1996.
[21]  莫志亚, 佟建冬, 吕少复. 11种蛇纹石物理化学特征的分析[J]. 中国地方病防治杂志, 2005, 20(2): 84-86.
[22]  王勇生, 朱光, 刘国生. 糜棱岩化过程中绿泥石多型与结晶度的演变[J]. 矿物学报, 2004, 24(3): 271-277.
[23]  韩宝平, 冯启言. 兖州矿区红层砂岩中自生绿泥石的产状和成因[J]. 中国矿业大学学报, 1999, 28(1): 53-56.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133