全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多孔材料孔径分布测试方法的研究
Analysis Method of Pore Size Distribution of Porous Materials

DOI: 10.12677/MS.2020.102012, PP. 95-103

Keywords: 孔径分布,多孔材料,BJH,HK,SF,NLDFT
Pore Size Distribution
, Porous Materials, BJH, HK, SF, NLDFT

Full-Text   Cite this paper   Add to My Lib

Abstract:

孔径及孔径分布是多孔材料的重要性质之一,通过介绍包括Barrett-Joyner-Halenda (BJH)法、Horvath-Kawazoe (HK)法、Saito-Foley (SF)法和NLDFT (非定域密度泛函理论)多种孔径分析的理论模型,总结了每种模型的优缺点及适用条件。结果表明,BJH法只能适用于分析柱状的介孔材料(5 nm < 孔径 < 50 nm);HK法只适用于分析含狭缝孔的微孔活性炭材料;SF法适用于根据氩气吸附等温线分析圆柱型微孔材料;NLDFT法不仅适用于分析微孔材料的孔径分布,还可以分析微介孔复合材料孔径分布,具有更广的应用范围及前景。
Pore size and pore size distribution are one of the important properties of porous materials. Various theoretical models for pore size analysis, including Barrett-Joyner-Halenda (BJH), Horvath-Kawazoe (HK), Saito-Foley (SF) and NLDFT (non-local density functional theory) are introduced, and the applicable conditions of each theoretical model are summarized. The results show that BJH method can be used to analyze cylindrical mesoporous materials with pore size between 5 nm and 50 nm. HK method is more suitable for the analysis of microporous activated carbon materials with slit holes, and SF method is intended for analyzing cylindrical microporous materials according to the adsorption isotherms determined by argon. NLDFT method is more suitable for the analysis of micro-mesoporous composites, which has a wide range of applications and prospects.

References

[1]  Ying, J.Y., Mehner, C.P. and Wong, M.S. (1999) Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angewandte Chemie International Edition, 38, 56 -77.
[2]  闫继娜, 施剑林, 陈航榕, 等. 纳米介孔材料的催化应用前景[J]. 无机材料学报, 2003, 18(4): 725-730.
[3]  侯梅芳, 崔杏雨, 李瑞丰. 沸石分子筛在气体吸附分离方面的应用研究[J]. 太原理工大学学报, 2001, 32(2): 135-139 .
[4]  Yu, J.C., Wang, X. and Fu, X. (2004) Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films. Chemistry of Materials, 16, 1523-1530.
https://doi.org/10.1021/cm049955x
[5]  刘欣梅, 阎子峰, Lu, G.Q. 介孔纳米二氧化锆的微观结构及其应用[J]. 科学通报, 2004, 49(6): 522-527.
[6]  Hou, K., Tian, B., Li, F., et al. (2005) Highly Crystallized Mesoporous TiO2 Films and Their Applications in Dye Sensitized Solar Cells. Journal of Materials Chemistry, 15, 2414 -2420.
https://doi.org/10.1039/b417465h
[7]  Choi, S.Y., Mamak, M., Coombs, N., Ozin, G.A., et al. (2004) Electrochromic Performance of Viologen-Modified Periodic Mesoporous Nanocrystallineanatase Electrodes. Nano Letters, 4, 1231 -1235.
https://doi.org/10.1021/nl049484d
[8]  Ye, B., Trudeau, M. and Antonelli, D. (2001) Synthesis and Electronic Properties of Potassium Fulleride Nanowires in a Mesoporous Niobium Oxide Host. Advanced Materials, 13, 29-33.
https://doi.org/10.1002/1521-4095(200101)13:1<29::AID-ADMA29>3.0.CO;2-A
[9]  Skadtchenko, B.O., Trudeau, M., Kwon, C.W., et al. (2004) Antonelli, Synthesis and Electrochemistry of Li-and Na-Fulleride Doped Mesoporous Taoxides. Chemistry of Materials, 16, 2886-2884.
https://doi.org/10.1021/cm030548f
[10]  Zhe, L.Z. and Zheng, H.Y. (2013) Theoretical and Practical Discussion of Measurement Accuracy for Physisorption with Micro-and Mesoporous Materials. Chinese Journal of Catalysis, 34, 1797-1810.
https://doi.org/10.1016/S1872-2067(12)60601-9
[11]  Lowell, S. and Shields, J.E. (1991) Powder Surface Area and Porosity. 3rd Edition, Chapman and Hall, New York, 119.
https://doi.org/10.1007/978-94-015-7955-1
[12]  郭静, 张芬丽, 刘玉霞. 微介孔复合材料孔径分析方法对比[J]. 河南化工, 2017, 34(9): 52-55.
[13]  Cai, G.H., Zheng, X.H., Zheng, Y., Xiao, Y. and Zheng, Y. (2016) Synthesis of Ordered Mesoporous Boron-Doped γ-Alumina with High Surface Area and Large Pore Volume. Materials Letters, 178, 248-251.
https://doi.org/10.1016/j.matlet.2016.04.041
[14]  Groen, J.C., Peffer, L.A.A. and Perez-Ramirez, J. (2003) Pore Size Determination in Modified Micro- and Mensoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis. Microporous and Mesoporous Materials, 60, 1-17.
https://doi.org/10.1016/S1387-1811(03)00339-1
[15]  Lowell, S., Shields, J.E., Thomas, M.A.J. and Thommes, M. (2003) Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Kluwer Academic Publishers, Dordrecht.
https://doi.org/10.1007/978-1-4020-2303-3
[16]  辛勤, 罗盂飞. 现代催化研究方法[M]. 北京: 科学出版社, 2009.
[17]  Horvath, G. and Kawazoe, K. (1983) Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon. Journal of Chemical Engineering of Japan, 16, 470.
https://doi.org/10.1252/jcej.16.470
[18]  Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., et al. (1999) Phase Separation in Confined Systems. Reports on Progress in Physics, 62, 1573.
https://doi.org/10.1088/0034-4885/62/12/201
[19]  Thommes, M. and Findenegg, G.H. (1994) Pore Condensation and Critical-Point Shift of a Fluid in Controlled-Pore Glass. Langmuir, 10, 4270-4277.
https://doi.org/10.1021/la00023a058
[20]  Thommes, M., Koehn, R. and Froeba, M. (2002) Sorption and Pore Condensation Behavior of Pure Fluids in Mesoporous MCM-48 Silica, MCM-41 Silica, SBA-15 Silica and Controlled-Pore Glass at Temperatures Above and Below The Bulk Triple Point. Applied Surface Science, 196, 239-249.
https://doi.org/10.1016/S0169-4332(02)00062-4
[21]  Thommes, M., K?hn, R. and Fr?ba, M. (2000) Sorption and Pore Condensation Behavior of Nitrogen, Argon, and Krypton in Mesoporous MCM-48 Silica Materials. The Journal of Physical Chemistry B, 104, 7932-7943.
https://doi.org/10.1021/jp994133m
[22]  Walton, J.P.R.B. and Quirke, N. (1989) Capillary Condensation: A Molecular Simulation Study. Molecular Simulation, 2, 361-391.
https://doi.org/10.1080/08927028908034611

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133