全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ce掺杂与结构优化策略提高ZnO光催化性能
Enhanced Photocatalytic Activity of Ce Doped ZnO Nanoflower with Optimized Structure

DOI: 10.12677/JAPC.2020.91001, PP. 1-11

Keywords: ZnO纳米花,稀土元素Ce,掺杂,光催化
ZnO Nanoflower
, Rare Earth Element Ce, Doping, Photocatalysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用简单的温和水热法制备了具备特殊形貌的ZnO纳米花材料,并对其进行了稀土Ce掺杂,利用SEM、XRD、EDX、N2吸附–脱附、紫外可见分光光度法等手段对催化剂进行了表征,并研究了其对罗丹明B光催化降解的动力学性能和机理。结果表明,ZnO纳米花催化反应速率是普通ZnO纳米结构的2.6倍,掺杂了2%的Ce-ZnO催化反应速率比掺杂前又提高了1.6倍,说明催化剂结构优化和稀土元素掺杂的功能修饰策略可有效提高ZnO的光催化活性。
A ZnO nanoflower with special morphology was prepared by a simple mild hydrothermal method and further Ce-doped. The catalysts were characterized by SEM, XRD, EDX, N2 adsorption-desorption, UV-vis, and their kinetic properties and mechanism of photocatalytic degradation of rhodamine B were studied. The results show that the catalytic rate of ZnO nanoflowers is 2.6 times that of ordinary ZnO nanostructures, moreover the rate of 2% Ce-ZnO is 1.6 times higher than that before doping. The structure optimization and rare earth element-doped strategies can effectively improve the photocatalytic activity of ZnO.

References

[1]  Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
https://doi.org/10.1038/238037a0
[2]  桥本和仁, 藤岛昭. 图解光催化技术大全[M]. 北京: 科学出版社, 2003.
[3]  Palmisano, G., Augugliaro, V., Pagliaro, M., et a1. (2007) Photocatalysis: A Promising Route for 21st Century Organic Chemistry. Chemical Communications, 33, 3425-3437.
https://doi.org/10.1039/b700395c
[4]  Hurtley, A.E., Cismesia, M.A., Ischay, M.A., et a1. (2011) Visible Light Photocatalysis of Radical Anion Hetero-Diels-Alder Cycloadditions. Tetrahedron, 67, 4442-4448.
https://doi.org/10.1016/j.tet.2011.02.066
[5]  Serpone, N. and Emeline, A.V. (2012) Semiconductor Photocatalysis—Past, Present, and Future Outlook.The Journal of Physical Chemistry Letters, 3, 673-677.
https://doi.org/10.1021/jz300071j
[6]  余长林, 杨凯, 余济美, 彭鹏, 操芳芳, 李鑫, 周晓春. 稀土Ce掺杂对ZnO结构和光催化性能的影响[J]. 物理化学学报, 2011(2): 505-512.
[7]  Li, R.R., Cao, J.J., Huang, Y.R., Yao, Y.F., Zhang, Z.K., Fan, H.J., Zhao, J. and Han, D.M. (2019) Polyionic Liquids (PIL) Promoted Ce Doped ZnO for the Photocatalytic Degradation of Rhodamine B (RhB). Chemistry Select, 4, 10748-10755.
https://doi.org/10.1002/slct.201902040
[8]  Armelao, L., Bottaro, G., Pascolini, M., et al. (2008) Structure-Luminescence Correlations in Europium-Doped Sol-Gel ZnO Nanopowders. The Journal of Physical Chemistry C, 112, 4049-4054.
https://doi.org/10.1021/jp710207r
[9]  Zhou, X.F., Zhang, D.Y., Zhu, Y., et al. (2006) Mechanistic Investigations of PEG-Directed Assembly of One-Dimensional ZnO Nanostructures. The Journal of Physical Chemistry B, 110, 25734-25739.
https://doi.org/10.1021/jp0643855
[10]  Yu, J.G., Wang, W.G., Cheng, B. and Su, B.L. (2009) Enhancement of Photocatalytic Activity of Mesporous TiO2 Powders by Hydrothermal Surface Fluorination Treatment. The Journal of Physical Chemistry C, 113, 6743-6750.
https://doi.org/10.1021/jp900136q
[11]  Bavykin, D.V., Friedrich, J.M. and Walsh, F.C. (2006) Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Advanced Materials, 18, 2807-2824.
https://doi.org/10.1002/adma.200502696

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133