全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SBAS-InSAR对盐湖地区进行冻土形变监测
Deformation Monitoring of Frozen Soil in Salt Lake Area Based on SBAS-InSAR

DOI: 10.12677/AG.2020.102011, PP. 100-120

Keywords: 形变监测,冻土,SBAS,时间序列分析,相位优化
Deformation Monitoring
, Frozen Soil, SBAS, Time Series Analysis, Phase Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

近些年来盐湖湖水面积迅速扩大,永久冻土稳定性遭到破坏,永久冻土的退化及周期性变化会破坏基础设施、寒区的生态水文环境以及引发地质灾害。本文基于开源ISCE平台对传统SBAS-InSAR方法作出改进,通过添加解缠误差校正和降噪来对盐湖区域121景Sentinel-1影像进行分析,得到该地2014~2019年的形变时间序列,以此来对基础设施及潜在地质灾害进行分析。结果表明研究区域地表总体处于不断沉降的趋势,最大年均沉降量可达到?6.59 ± 0.10 [cm/yr],累积最大沉降量已达到?31.81 cm,随季节发生“热熔冻胀”周期性形变,且存在形变延迟效应,青藏公路、铁路东北段形变强于西南段,山体存在多处堆积垮塌隐患点,最大年均堆积量可达到11.69 ± 0.07 [cm/yr],累积最大堆积量已达到55.13 cm。
In recent years, with the rapid expansion of the water area of the salt lake, the stability of perma-frost has been destroyed. The degradation and periodic change of permafrost will damage the in-frastructure, the ecological and hydrological environment in the cold region and cause geological disasters. Based on the open source ISCE platform, this paper improves the traditional SBAS-InSAR method, analyzes 121 sentinel-1 images in the Salt Lake area by adding the error correction and noise reduction, and obtains the deformation time series of 2014-2019 in this area, so as to analyze the infrastructure and potential geological disasters. The results show that the land surface in the study area is in the trend of continuous settlement, the maximum annual average settlement can reach ?6.59 ± 0.10 [cm/yr], the cumulative maximum settlement has reached ?31.81 cm, and the periodic deformation of “hot melt and frost heave” occurs with the season, and there is deformation delay effect. The deformation in the northeast section of Qinghai Tibet Road and railway is stronger than that in the southwest section, and there are many potential points of accumulation and collapse in the mountain body, the maximum annual settlement can reach 11.69 ± 0.07 [cm/yr], and the maximum accumulation has reached 55.13 cm.

References

[1]  Mohammadimanesh, F., Salehi, B., Mahdianpari, M., et al. (2019) Monitoring Surface Changes in Discontinuous Permafrost Terrain Using Small Baseline SAR Interferometry, Object-Based Classification, and Geological Features: A Case Study from Mayo, Yukon Territory, Canada. GIScience & Remote Sensing, 56, 485-510. https://doi.org/10.1080/15481603.2018.1513444
[2]  Wang, S., Xu, B., et al. (2019) Monitoring the Degradation of Island Permafrost Using Time-Series InSAR Technique: A Case Study of Heihe, China. Sensors, 19, 1364. https://doi.org/10.3390/s19061364
[3]  Lu, J.J., Li, X.Z., Hu, Y.M., et al. (2007) Research Progress on Permafrost in Cold Region Ecosystem. Chinese Journal of Ecology, 26, 435-442.
[4]  张立杰. 青藏铁路沿线多年冻土区土壤热状况及其对气候变化的响应[D]: [博士学位论文]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2006.
[5]  赵蓉. 基于SBAS-InSAR的冻土形变建模及活动层厚度反演研究[D]: [硕士学位论文]. 长沙: 中南大学, 2014.
[6]  李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56(5): 58-68.
[7]  Xie, C., Li, Z. and Li, X. (2008) A Permanent Scatterers Method for Analysis of Deformation over Permafrost Regions of Qing-hai-Tibetan Plateau. IEEE International Geoscience & Remote Sensing Symposium, Boston, 8-11 July 2008, IV-1050-IV-1053. https://doi.org/10.1109/IGARSS.2008.4779906
[8]  Liu, L., Zhang, T. and Wahr, J. (2010) InSAR Measurements of Surface Deformation over Permafrost on the North Slope of Alaska. Journal of Geophysical Research, 115, F03023. https://doi.org/10.1029/2009JF001547
[9]  Zhao, R., Li, Z.W., Feng, G.C., et al. (2016) Monitoring Surface De-formation over Permafrost with an Improved SBAS-InSAR Algorithm: With Emphasis on Climatic Factors Modeling. Re-mote Sensing of Environment, 184, 276-287. https://doi.org/10.1016/j.rse.2016.07.019
[10]  张钰鑫, 谢昌卫, 赵林, 等. 青藏高原可可西里卓乃湖溃决出露湖底多年冻土形成过程的监测与模拟[J]. 冰川冻土, 2017, 39(5): 949-956.
[11]  杜玉娥, 刘宝康, 贺卫国, 等. 1976~2017年青藏高原可可西里盐湖面积动态变化及成因分析[J]. 冰川冻土, 2018, 40(1): 53-60.
[12]  Qu, T., Xu, Q., Shan, W., Li, Z., Shan, M. and Dai, K. (2019) Deformation Monitoring of High-Latitude Perma-frost Region of Northeastern China with Time Series InSAR Technique. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Enschede, The Netherlands, 14 June 2019, 1777-1780. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1777-2019
[13]  Biggs, J., Wright, T., Lu, Z., et al. (2007) Mul-ti-Interferogram Method for Measuring Interseismic Deformation: Denali Fault, Alaska. Geophysical Journal of the Royal Astronomical Society, 170, 1165-1179. https://doi.org/10.1111/j.1365-246X.2007.03415.x
[14]  Hussain, E., Hooper, A., Wright, T.J., et al. (2016) Interseismic Strain Accumulation across the Central North Anatolian Fault from Iteratively Unwrapped InSAR Measurements. Journal of Geophysical Research: Solid Earth, 121, 9000-9019. https://doi.org/10.1002/2016JB013108
[15]  Andersen, M., Dahl, J., Liu, Z. and Vandenberghe, L. (2011) Interior-Point Methods for Large-scale Cone Programming.
[16]  Agram, P., Jolivet, R., Riel, B., Lin, Y-N., Simons, M., Hetland, E., Doin, M.-P. and Lasserre, C. (2013) New Radar Interferometric Time Series Analysis Toolbox Released. Eos, Transactions American Geophysical Union, 94, 69-70. https://doi.org/10.1002/2013EO070001
[17]  Tough, R.J.A, Blacknell, D. and Quegan, S. (1995) A Statistical Description of Polarimetric and Interferometric Synthetic Aperture Radar Data. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 449, 567-589. https://doi.org/10.1098/rspa.1995.0059
[18]  Wang, X.W., Liu, L., Zhao, L., Wu, T.H., Li, Z.Q. and Liu, G.X. (2017) Mapping and Inventorying Active Rock Glaciers in the Northern Tien Shan of China Using Satellite SAR Interferometry. The Cryosphere, 11, 997-1014. https://doi.org/10.5194/tc-11-997-2017
[19]  Reinosch, E., Buckel, J., Dong, J., Gerke, M., Baade, J. and Riedel, B. (2019) InSAR Time Series Analysis of Seasonal Surface Displacement Dynamics on the Tibetan Plateau. The Cryosphere Discussion. https://doi.org/10.5194/tc-2019-262

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133