全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

若尔盖湿地近地表气象要素分析
Analysis of Meteorological Elements in the Near Surface of Zoige Wetland

DOI: 10.12677/GSER.2019.84041, PP. 399-406

Keywords: 若尔盖,温度,相对湿度,风向,辐射
Zoige
, Temperature, Relative Humidity, Wind Direction, Radiation

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用2015年夏季若尔盖地区观测数据对若尔盖湿地区域近地表气温、土壤温度、近地表相对湿度、土壤湿度、风向、近地表辐射进行了分析。研究发现,近地表及地表温度日较差不稳定,土壤温度的日较差比近地表气温的日较差要小,土壤较深层的温度极值出现时段相较于浅层有明显滞后。相对湿度有明显的日变化,于日出前达到最大值,太阳高度角最高时达到最小值,深层的变化时段比浅层滞后。若尔盖地区7~9月风向以南风为主。此外,向下短波辐射与向上短波辐射日变化呈单峰型,且在数值上明显大于向上短波辐射,向下长波辐射和向上长波辐射的月变化趋势基本相同。此外,若尔盖地区以潜热输送为主要能量输送路径。
The near-surface air temperature, soil temperature, near-surface relative humidity, soil moisture, wind direction and near-surface radiation of the Zoige wetland area were analyzed using the ob-servation data of the Zoige area in the summer of 2015. The study found that the near-surface and surface temperature are relatively unstable, the daily temperature difference of the soil tempera-ture is smaller than that of the near-surface temperature, and the temperature extreme value of the deeper layer of the soil has a significant lag compared with the shallow layer. There is a signif-icant daily variation in relative humidity, reaching a maximum before sunrise, reaching a minimum at the highest sun angle, and a deep change in the deep layer. The wind direction of the Zoige region is mainly southerly from July to September. In addition, the diurnal variation of the downward short-wave radiation and the upward short-wave radiation is unimodal, and is numerically significantly larger than the upward short-wave radiation. The monthly trend of the downward long-wave radiation and the upward long-wave radiation is basically the same. In addition, the Zoige area uses latent heat transport as the main energy transport path.

References

[1]  安雅. 保护“地球之肾”挑战与机遇并存[J]. 林业经济, 2007(20): 106-107.
[2]  宋长春. 湿地生态系统对气候变化的响应[J]. 湿地科学, 2003, 1(2): 122-127.
[3]  张旭辉, 李典友, 潘根兴, 等. 中国湿地土壤碳库保护与气候变化问题[J]. 气候变化研究进展, 2008, 4(4): 202-208.
[4]  Poiani, K.A. and Johnson, W.C. (1993) A Spatial Simu-lation Model of Hydrology and Vegetation Dynamics in Semi-Permanent Prairie Wetlands. Ecological Applications, 3, 279-293.
https://doi.org/10.2307/1941831
[5]  高洁. 四川若尔盖湿地退化成因分析与对策研究[J]. 四川环境, 2006(4): 48-53.
[6]  汪学华, 田昆. 若尔盖湿地研究进展[J]. 西南林业大学学报(自然科学), 2015(6): 104-110.
[7]  强皓凡, 靳晓言, 赵璐, 卢泽华. 基于相对湿润度指数的近56年若尔盖湿地干湿变化[J]. 水土保持研究, 2018, 25(1): 172-177+182.
[8]  何奕忻, 吴宁, 朱求安, 等. 青藏高原东北部5000年来气候变化与若尔盖湿地历史生态学研究进展[J]. 生态学报, 2014, 34(7): 1615-1625.
[9]  梁霄, 靳晓言, 强皓凡. 若尔盖湿地参考作物蒸散量时空演变特征及成因分析[J]. 节水灌溉, 2018(8): 47-53.
[10]  马骅, 王义飞, 李肖夏, 宁宇, 赵娜娜, 武高洁, 索郎夺尔基. 若尔盖高原湿地生态系统研究综述[J]. 安徽农业科学, 2016, 44(29): 31-34.
[11]  李霞. 若尔盖湿地土壤有机碳储量时空变化研究[D]: [博士学位论文]. 北京: 北京林业大学, 2016.
[12]  戴洋. 若尔盖湿地的陆气相互作用模拟研究[D]: [博士学位论文]. 北京: 中国气象科学研究院, 2006.
[13]  郭洁, 李国平. 若尔盖气候变化及其对湿地退化的影响[J]. 高原气象, 2007, 26(2): 422-428.
[14]  戴洋, 罗勇, 王长科, 等. 1961-2008年若尔盖高原湿地的气候变化和突变分析[J]. 冰川冻土, 2010, 32(1): 35-42.
[15]  王燕, 赵志中, 乔彦松, 等. 若尔盖45年来的气候变化特征及其对当地生态环境的影响[J]. 地质力学学报, 2005, 11(4): 328-332.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133