全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黄瓜MGT基因的鉴定和特征分析
Identification and Characterization of Cucumber MGT Genes

DOI: 10.12677/HJAS.2019.911152, PP. 1084-1090

Keywords: 黄瓜,镁离子转运载体,结构,进化,顺式元件
Cucumber (Cucumis sativus L.)
, Magnesium Transporter, Structure, Phylogeny, Cis-Element

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文从黄瓜基因组中鉴定出7个镁离子转运载体MGT基因,并对这些基因的基因组分布、基因结构、系统进化和顺式元件进行了系统分析。结果显示,黄瓜的MGT基因不均匀地分布在基因组中,它们的基因结构差异较大,但都存在一个CorA类镁离子载体蛋白结构域。在进化上这些基因分为三个不同的类群,在它们的上游序列中存在多个顺式元件,能够应答不同的激素和逆境信号,且不同MGT成员间顺式元件有所不同。这些结果预示黄瓜的MGT基因在功能上具有一定的相似性,但又有所分化。
In this text, 7 magnesium transporter genes (MGT) were identified in cucumber genome. Also their genome distribution, gene structure, phylogeny, and cis-elements were systemically analyzed. The results showed that, the cucumber MGT genes unevenly distributed in genome, and their gene structures were different from each other. However, their encoded putative proteins all have a conserved CorA magnesium transporter like domain. As for their phylogeny, they were divided into three subgroups. In their upstream region, there were multiple cis-elements responsive to different hormones and environmental stimuli. And the cis-element type and number of each cucumber MGT was some different. All these results implicated that cucumber MGT genes have similar but divergent roles.

References

[1]  杨军芳, 周晓芬, 冯伟. 土壤与植物镁素研究进展概述[J]. 河北农业科学, 2008, 12(3): 91-93, 96.
[2]  林敏霞, 张晓东, 邱美欢, 张洪溢, 王丹. 植物镁素生理功能及镁素营养诊断和施用[J]. 热带农业科学, 2016, 36(3): 39-43.
[3]  Shaul, O. (2002) Magnesium Transport and Function in Plants: The Tip of the Iceberg. Biometals, 15, 309-323.
https://doi.org/10.1023/A:1016091118585
[4]  Niu, Y., Chai, R., Liu, L., Jin, G., Liu, M., Tang, C. and Zhang, Y. (2014) Magnesium Availability Regulates the Development of Root Hairs in Arabidopsis thaliana (L.) Heynh. Plant, Cell & Environment, 37, 2795-2813.
https://doi.org/10.1111/pce.12362
[5]  Liu, M., Bi, J. and Jin, C. (2018) Developmental Responses of Root Hairs to Mg Deficiency. Plant Signal Behavior, 13, e1500068.
https://doi.org/10.1080/15592324.2018.1500068
[6]  丛悦玺, 骆东峰, 陈坤明, 蒋立希, 郭万里. 生物镁离子转运体研究进展[J]. 农业生物技术学报, 2012, 20(7): 837-848.
[7]  Verbruggen, N. and Hermans, C. (2013) Physiological and Molecular Responses to Magnesium Nutri-tional Imbalance in Plants. Plant Soil, 368, 87-99.
https://doi.org/10.1007/s11104-013-1589-0
[8]  Li, L., Tutone, A.F., Drummond, R.S., et al. (2001) A Novel Family of Magnesium Transport Genes in Arabidopsis. Plant Cell, 13, 2761-2775.
https://doi.org/10.1105/tpc.010352
[9]  阳江华, 秦云霞, 方永军, 唐朝荣. 巴西橡胶树镁离子转运蛋白基因HbMGT10的克隆及表达分析[J]. 热带作物学报, 2016, 37(12): 2353-2358.
[10]  汪仁, 蔡黎丽, 徐晟, 李晓丹, 夏冰. 石蒜Mg2+转运体基因LrMGT的克隆与分析[J]. 植物资源与环境学报, 2014, 23(4): 1-7.
[11]  张岗, 翟清华, 张大为, 胡本祥, 郭顺星. 铁皮石斛镁离子转运蛋白基因的克隆及表达分析[J]. 中草药, 2014, 45(23): 3443-3448.
[12]  Saito, T., Kobayashi, N., Tanoi, K., Iwata, N., Suzuki, H., Iwata, R. and Nakanishi, T.M. (2013) Ex-pression and Functional Analysis of the CorA-MRS2-ALR-Type Magnesium Transporter Family in Rice. Plant Cell Physiology, 54, 1673-1683.
https://doi.org/10.1093/pcp/pct112
[13]  Li, H., Du, H., Huang, K., Chen, X., Liu, T., Gao, S., Liu, H., Tang, Q., Rong, T. and Zhang, S. (2016) Identification, and Functional and Expression Analyses of the CorA/MRS2/MGT-Type Magnesium Transporter Family in Maize. Plant Cell Physiology, 57, 1153-1168.
https://doi.org/10.1093/pcp/pcw064
[14]  Regon, P., Chowra, U., Awasthi, J.P., Borgohain, P. and Panda, S.K. (2019) Genome-Wide Analysis of Magnesium Transporter Genes in Solanum lycopersicum. Computational Biology and Chemistry, 80, 498-511.
https://doi.org/10.1016/j.compbiolchem.2019.05.014
[15]  Zhang, L., Wen, A., Wu, X., Pan, X., Wu, N., Chen, X., Chen, Y., Mao, D., Chen, L. and Luan, S. (2019) Molecular Identification of the Magnesium Transport Gene Family in Brassica napus. Plant Physiology and Biochemistry, 136, 204-214.
https://doi.org/10.1016/j.plaphy.2019.01.017
[16]  Wang, Y., Hua, X., Xu, J., Chen, Z., Fan, T., Zeng, Z., Wang, H., Hour, A.L., Yu, Q., Ming, R. and Zhang, J. (2019) Comparative Genomics Revealed the Gene Evolution and Func-tional Divergence of Magnesium Transporter Families in Saccharum. BMC Genomics, 20, 83.
https://doi.org/10.1186/s12864-019-5437-3
[17]  Deng, W., Luo, K., Li, D., et al. (2006) Overexpression of an Arabidopsis Magnesium Transport Gene, AtMGT1, in Nicotiana benthamiana Confers Al Tolerance. Journal of Ex-perimental Botany, 57, 4235-4243.
https://doi.org/10.1093/jxb/erl201
[18]  Chen, Z.C., Yamaji, N., Motoyama, R., Nagamura, Y. and Ma, J.F. (2012) Up-Regulation of a Magnesium Transporter Gene OsMGT1 Is Required for Conferring Aluminum Tolerance in Rice. Plant Physiology, 159, 1624-1633.
https://doi.org/10.1104/pp.112.199778
[19]  Conn, S.J., Conn, V., Tyerman, S.D., Kaiser, B.N., Leigh, R.A. and Gilliham, M. (2011) Magnesium Transporters, MGT2/MRS2-1 and MGT3/MRS2-5, Are Important for Magnesium Partitioning within Arabidopsis thaliana Mesophyll Vacuoles. New Phytologist, 190, 583-594.
https://doi.org/10.1111/j.1469-8137.2010.03619.x
[20]  Li, J., Huang, Y., Tan, H., Yang, X., Tian, L., Luan, S., Chen, L. and Li, D. (2015) An Endoplasmic Reticulum Magnesium Transporter Is Essential for Pollen Development in Arabidopsis. Plant Science, 231, 212-220.
https://doi.org/10.1016/j.plantsci.2014.12.008
[21]  Li, L.G., Sokolov, L.N., Yang, Y.H., et al. (2008) A Miton-chondrial Magnesium Transporter Functions in Arabidopsis Pollen Development. Molecular Plant, 1, 675-685.
https://doi.org/10.1093/mp/ssn031
[22]  Xu, X.F., Wang, B., Lou, Y., Han, W.J., Lu, J.Y., Li, D.D., Li, L.G., Zhu, J. and Yang, Z.N. (2015) Magnesium Transporter 5 Plays an Important Role in Mg Transport for Male Gametophyte Development in Arabidopsis. Plant Journal, 84, 925-936.
https://doi.org/10.1111/tpj.13054
[23]  Chen, J., Li, L.G., Liu, Z.H., et al. (2009) Magnesium Transporter AtMGT9 Is Essential for Pollen Development in Arabidopsis. Cell Re-search, 19, 887-898.
https://doi.org/10.1038/cr.2009.58
[24]  Mao, D., Chen, J., Tian, L., Liu, Z., Yang, L., Tang, R., Li, J., Lu, C., Yang, Y., Shi, J., Chen, L., Li, D. and Luan, S. (2014) Arabidopsis Transporter MGT6 Mediates Magnesium Uptake and Is Required for Growth under Magnesium Limitation. Plant Cell, 26, 2234-2248.
https://doi.org/10.1105/tpc.114.124628
[25]  Yan, Y.W., Mao, D.D., Yang, L., Qi, J.L., Zhang, X.X., Tang, Q.L., Li, Y.P., Tang, R.J. and Luan, S. (2018) Magnesium Transporter MGT6 Plays an Essential Role in Maintaining Magne-sium Homeostasis and Regulating High Magnesium Tolerance in Arabidopsis. Front Plant Science, 9, 274.
https://doi.org/10.3389/fpls.2018.00274
[26]  Gebert, M., Meschenmoser, K., Svidová, S., Weghuber, J., Schweyen, R., Eifler, K., Lenz, H., Weyand, K. and Knoop, V. (2009) A Root-Expressed Magnesium Transporter of the MRS2/MGT Gene Family in Arabidopsis thaliana Allows for Growth in Low-Mg2+ Environments. Plant Cell, 21, 4018-4030.
https://doi.org/10.1105/tpc.109.070557
[27]  马春丽, 和硕特.麦丽斯, 祁智, 王静, 张俊霞. 镁转运体MGT7参与拟南芥对高钙环境的适应[J]. 植物学报, 2016, 51(4): 496-503.
[28]  Sun, Y., Yang, R., Li, L. and Huang, J. (2017) The Magnesium Transporter MGT10 Is Essential for Chloroplast Development and Photosynthesis in Arabidopsis thaliana. Molecular Plant, 10, 1584-1587.
https://doi.org/10.1016/j.molp.2017.09.017
[29]  李洪有, 陈庆富. 玉米ZmMGT10基因的克隆及功能分析[J]. 核农学报, 2018, 32(1): 22-29.
[30]  Li, H., Wang, N., Ding, J., Liu, C., Du, H., Huang, K., Cao, M., Lu, Y., Gao, S. and Zhang, S. (2017) The Maize CorA/MRS2/MGT-Type Mg Transporter, ZmMGT10, Responses to Magnesium Defi-ciency and Confers Low Magnesium Tolerance in Transgenic Arabidopsis. Plant Molecular Biology, 95, 269-278.
https://doi.org/10.1007/s11103-017-0645-1
[31]  李洪有, 张素芝, 陈庆富. 玉米ZmMGT12基因的表达分析及拟南芥遗传转化[J]. 分子植物育种, 2018, 16(18): 5940-5946.
[32]  Li, H., Liu, C., Zhou, L., Zhao, Z., Li, Y., Qu, M., Huang, K., Zhang, L., Lu, Y., Cao, M., Gao, S. and Zhang, S. (2018) Molecular and Functional Characterization of the Magnesium Transporter Gene ZmMGT12 in Maize. Gene, 665, 167-173.
https://doi.org/10.1016/j.gene.2018.04.068
[33]  Alcock, T.D., Havlickova, L., He, Z., Bancroft, I., White, P.J., Broadley, M.R. and Graham, N.S. (2017) Identification of Candidate Genes for Calcium and Magnesium Accumulation in Brassica napus L. by Association Genetics. Front Plant Science, 8, 1968.
https://doi.org/10.3389/fpls.2017.01968
[34]  Chen, Z.C., Yamaji, N., Horie, T., Che, J., Li, J., An, G. and Ma, J.F. (2017) A Magnesium Transporter OsMGT1 Plays a Critical Role in Salt Tolerance in Rice. Plant Physiology, 174, 1837-1849.
https://doi.org/10.1104/pp.17.00532
[35]  Zhang, L., Peng, Y., Li, J., Tian, X. and Chen, Z. (2019) OsMGT1 Confers Resistance to Magnesium Deficiency by Enhancing the Import of Mg in Rice. International Journal of Molecular Sciences, 20, 207.
https://doi.org/10.3390/ijms20010207
[36]  李利斌, 孟昭娟, 王永强, 等. 黄瓜抗坏血酸过氧化物酶基因的鉴定和特征分析[J]. 计算生物学, 2018, 8(2): 33-39.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133