|
基于对抗生成网络的滚动轴承故障检测方法
|
Abstract:
[1] | Kantz, H. and Schreiber, T. (2004) Nonlinear Time Series Analysis. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511755798 |
[2] | Mao, W., Feng, W., Liang, X. and Zhang, X. (2019) A Novel Deep Output Kernel Learning Method for Bearing Fault Structural Diagnosis. Mechanical Systems and Signal Processing, 117, 293-318.
https://doi.org/10.1016/j.ymssp.2018.07.034 |
[3] | Yang, H., Mathew, J. and Ma, L. (2005) Fault Diagnosis of Rolling Element Bearings Using Basis Pursuit. Mechanical Systems and Signal Processing, 19, 341-356. https://doi.org/10.1016/j.ymssp.2004.03.008 |
[4] | Lei, Y., Jia, F., Lin, J., Xing, S. and Ding, S.X. (2016) An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning towards Mechanical Big Data. IEEE Transactions on Industrial Electronics, 63, 3137-3147.
https://doi.org/10.1109/TIE.2016.2519325 |
[5] | Yin, H. and Gai, K. (2015) An Empirical Study on Preprocessing High-Dimensional Class-Imbalanced Data for Classification. 2015 IEEE 17th International Conference on High Performance Com-puting and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th In-ternational Conference on Embedded Software and Systems, New York, 24-26 August 2015, 1314-1319.
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.205 |
[6] | 张仁斌, 许辅昊, 刘飞, 等. 基于K-均值聚类的工业异常数据检测[J]. 计算机应用研究, 2018, 35(7): 266-270. |
[7] | Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014) Generative Adversarial Nets. Advances in Neural Information Processing Systems (NIPS 2014), 2672-2680. |
[8] | Schlegl, T., Seeb?ck, P., Waldstein, S.M., Schmidt-Erfurth, U. and Langs, G. (2017) Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. In: Niethammer, M., et al., Eds., Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science, Springer, Cham, 146-157.
https://doi.org/10.1007/978-3-319-59050-9_12 |
[9] | Donahue, J., Kr?henbühl, P. and Darrell, T. (2016) Adversarial Feature Learning. arXiv:1605.09782.
https://arxiv.org/abs/1605.09782 |
[10] | Akcay, S., Atapour-Abarghouei, A. and Breckon, T.P. (2018) GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training. arXiv:1805.06725. https://arxiv.org/abs/1805.06725 |
[11] | Liu, J., Qu, F., Hong, X. and Zhang, H. (2019) A Small-Sample Wind Turbine Fault Detection Method with Synthetic Fault Data Using Generative Adversarial Nets. IEEE Transactions on Industrial Informatics, 15, 3877-3888.
https://doi.org/10.1109/TII.2018.2885365 |
[12] | Han, T., Liu, C., Yang, W. and Jiang, D. (2019) A Novel Adversarial Learning Framework in Deep Convolutional Neural Network for Intelligent Diagnosis of Mechanical Faults. Knowledge-Based Systems, 165, 474-487.
https://doi.org/10.1016/j.knosys.2018.12.019 |
[13] | 邵俊杰, 董伟, 冯志. 基于机器学习的工业控制网络异常检测方法[J]. 信息技术与网络安全, 2019, 38(6): 17-20+25. |
[14] | Wu, Z., Lin, W. and Ji, Y. (2018) An Integrated Ensemble Learning Model for Imbalanced Fault Diagnostics and Prognostics. IEEE Access, 6, 8394-8402. https://doi.org/10.1109/ACCESS.2018.2807121 |
[15] | Japkowicz, N. (2000) The Class Imbalance Problem: Significance and Strategies. In: Proceedings of the 2000 International Conference on Artificial Intelligence, 111-117. |
[16] | Galar, M., Fernandez, A., Barrenechea, E., Bustince, H. and Herrera, F. (2012) A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42, 463-484. https://doi.org/10.1109/TSMCC.2011.2161285 |
[17] | Nanni, L., Fantozzi, C. and Lazzarani, N. (2015) Coupling Dif-ferent Methods for Overcoming the Class Imbalance Problem. Neurocomputing, 158, 48-61. https://doi.org/10.1016/j.neucom.2015.01.068 |
[18] | Radford, A., Metz, L. and Chintala, S. (2015) Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv:1511.06434. https://arxiv.org/abs/1511.06434 |
[19] | Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A. and Chen, X. (2016) Improved Techniques for Training GANs. 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 2234-2242. |
[20] | Kingma, D.P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization. arXiv:1412.6980.
https://arxiv.org/abs/1412.6980 |