全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于对抗生成网络的滚动轴承故障检测方法
Rolling Bearing Anomaly Detection Based on Generative Adversarial Networks

DOI: 10.12677/AIRR.2019.84023, PP. 208-218

Keywords: 不平衡工业时间序列,异常检测,生成对抗网络,滚动轴承数据
Imbalanced Industrial Time Series
, Anomaly Detection, Generated Antagonistic Network, Rolling Bearing Data

Full-Text   Cite this paper   Add to My Lib

Abstract:

在工业系统中普遍存在样本数据不平衡现象,正常样本数量远远大于异常样本数量。而传统的机器学习算法和深度学习方法,例如朴素贝叶斯和支持向量机,在处理类不平衡问题时,很难获得较高的识别分类准确率,因为它们往往会偏向保证多数类的准确率。为此,本文提出了一种基于生成对抗网络(GAN)的异常检测方法。这个方法中的生成器结构是“编码器–解码器–编码器”的三子网,并且训练该生成器只需要从正常样本中提取特征,所以训练数据集中就不需要异常样本。此系统的异常检测结果由样本的最终得分来判别,其中异常分数由表观损失和潜在损失组成。本文方法的亮点在于可以实现在无异常样本训练的情况下对异常数据样本做检测,通过系统生成更高的异常分数来诊断故障。本项目在凯斯西储大学(CWRU)获得的基准滚动轴承数据集上验证了该方法的可行性和有效性。本文提出的方法在数据集中区分异常样本与正常样本的准确率达到了100%。
The imbalance of sample data is common in industrial system, and the number of normal samples is much larger than the number of abnormal samples. However, machine learning algorithms and deep learning methods, such as Naive Bayes (NB) and Convolutional Neural Networks (CNN), are difficult to obtain high recognition and classification accuracy when dealing with class imbalance problems, because they tend to guarantee the accuracy of majority classes. This paper proposes an anomaly detection method based on Generative Adversarial Networks (GAN). The generator structure in this method is a triple subnet of “encoder-decoder-encoder”, and the training generator only needs to extract features from normal samples, so there is no need for abnormal samples in the training data set. The anomaly detection of the system is determined by the final score of the sample, in which abnormal scores are composed of apparent loss and potential loss. The highlight of the method in this paper is that it can detect abnormal data samples without training abnormal sample and diagnose faults by generating higher abnormal scores in the system. This project has verified the feasibility and effectiveness of this method on the rolling bearing data set obtained from Case Western Reserve University (CWRU). The accuracy of the method proposed in this paper in distinguishing abnormal samples from normal samples in the data set is 100%.

References

[1]  Kantz, H. and Schreiber, T. (2004) Nonlinear Time Series Analysis. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511755798
[2]  Mao, W., Feng, W., Liang, X. and Zhang, X. (2019) A Novel Deep Output Kernel Learning Method for Bearing Fault Structural Diagnosis. Mechanical Systems and Signal Processing, 117, 293-318.
https://doi.org/10.1016/j.ymssp.2018.07.034
[3]  Yang, H., Mathew, J. and Ma, L. (2005) Fault Diagnosis of Rolling Element Bearings Using Basis Pursuit. Mechanical Systems and Signal Processing, 19, 341-356.
https://doi.org/10.1016/j.ymssp.2004.03.008
[4]  Lei, Y., Jia, F., Lin, J., Xing, S. and Ding, S.X. (2016) An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning towards Mechanical Big Data. IEEE Transactions on Industrial Electronics, 63, 3137-3147.
https://doi.org/10.1109/TIE.2016.2519325
[5]  Yin, H. and Gai, K. (2015) An Empirical Study on Preprocessing High-Dimensional Class-Imbalanced Data for Classification. 2015 IEEE 17th International Conference on High Performance Com-puting and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th In-ternational Conference on Embedded Software and Systems, New York, 24-26 August 2015, 1314-1319.
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.205
[6]  张仁斌, 许辅昊, 刘飞, 等. 基于K-均值聚类的工业异常数据检测[J]. 计算机应用研究, 2018, 35(7): 266-270.
[7]  Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014) Generative Adversarial Nets. Advances in Neural Information Processing Systems (NIPS 2014), 2672-2680.
[8]  Schlegl, T., Seeb?ck, P., Waldstein, S.M., Schmidt-Erfurth, U. and Langs, G. (2017) Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. In: Niethammer, M., et al., Eds., Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science, Springer, Cham, 146-157.
https://doi.org/10.1007/978-3-319-59050-9_12
[9]  Donahue, J., Kr?henbühl, P. and Darrell, T. (2016) Adversarial Feature Learning. arXiv:1605.09782.
https://arxiv.org/abs/1605.09782
[10]  Akcay, S., Atapour-Abarghouei, A. and Breckon, T.P. (2018) GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training. arXiv:1805.06725.
https://arxiv.org/abs/1805.06725
[11]  Liu, J., Qu, F., Hong, X. and Zhang, H. (2019) A Small-Sample Wind Turbine Fault Detection Method with Synthetic Fault Data Using Generative Adversarial Nets. IEEE Transactions on Industrial Informatics, 15, 3877-3888.
https://doi.org/10.1109/TII.2018.2885365
[12]  Han, T., Liu, C., Yang, W. and Jiang, D. (2019) A Novel Adversarial Learning Framework in Deep Convolutional Neural Network for Intelligent Diagnosis of Mechanical Faults. Knowledge-Based Systems, 165, 474-487.
https://doi.org/10.1016/j.knosys.2018.12.019
[13]  邵俊杰, 董伟, 冯志. 基于机器学习的工业控制网络异常检测方法[J]. 信息技术与网络安全, 2019, 38(6): 17-20+25.
[14]  Wu, Z., Lin, W. and Ji, Y. (2018) An Integrated Ensemble Learning Model for Imbalanced Fault Diagnostics and Prognostics. IEEE Access, 6, 8394-8402.
https://doi.org/10.1109/ACCESS.2018.2807121
[15]  Japkowicz, N. (2000) The Class Imbalance Problem: Significance and Strategies. In: Proceedings of the 2000 International Conference on Artificial Intelligence, 111-117.
[16]  Galar, M., Fernandez, A., Barrenechea, E., Bustince, H. and Herrera, F. (2012) A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42, 463-484.
https://doi.org/10.1109/TSMCC.2011.2161285
[17]  Nanni, L., Fantozzi, C. and Lazzarani, N. (2015) Coupling Dif-ferent Methods for Overcoming the Class Imbalance Problem. Neurocomputing, 158, 48-61.
https://doi.org/10.1016/j.neucom.2015.01.068
[18]  Radford, A., Metz, L. and Chintala, S. (2015) Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv:1511.06434.
https://arxiv.org/abs/1511.06434
[19]  Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A. and Chen, X. (2016) Improved Techniques for Training GANs. 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 2234-2242.
[20]  Kingma, D.P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization. arXiv:1412.6980.
https://arxiv.org/abs/1412.6980

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133