全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于PSO-KMeans算法的MATLAB(GUI)图像分割系统平台开发应用
Development and Application of MATLAB (GUI) Image Segmentation System Platform Based on PSO-KMeans Algorithm

DOI: 10.12677/AIRR.2019.84022, PP. 197-207

Keywords: PSO-KMeans算法,图像分割系统,GUI,结果对比,分割应用
PSO-KMeans Algorithm
, Image Segmentation System, GUI, Result Comparison, Segmentation Application

Full-Text   Cite this paper   Add to My Lib

Abstract:

图像分割是一个经典的难题,也是数字图像处理的重要一步。找到一种快速高效的图像分割方法具有十分重要的意义。本文利用MATALB中GUI设计开发的简便性和易操作等特性,以PSO-KMeans图像分割组合算法理论研究为基础,并与同类分割算法KMeans算法的分割结果和数据作比较。通过图像用户界面相关控件的布局设计及回调函数程序的编写,开发了一套基于PSO-KMeans算法的MATLAB(GUI)图像分割系统平台,实现了对图像分割中分割结果、参数输出、数据可视化的简洁操作,解决了图像分割过程中实现复杂的问题。同时,选取在图像分割应用中的示例图片对图像进行分割测试。结果表示,图像分割系统界面友好,操作简单,准确实现了图像的分割,并得到分割的相关数据以及与同类算法分割结果的比较。该研究提高了图像分割的简单性以及可视化性。
Image segmentation is not only a classic difficult problem but also an important step in digital im-age processing. Finding a fast and efficient image segmentation method is very important. Based on the simplicity and easy operation of GUI design and development in MATALB, this paper is based on the theoretical research of PSO-KMeans image segmentation combination algorithm, and compared with the segmentation results and data of KMeans algorithm. Through the layout design of the image user interface related controls and the writing of the callback function program, a set of MATLAB (GUI) image segmentation system platform based on PSO-KMeans algorithm was de-veloped, which realized the segmentation result, parameter output and data visualization in image segmentation. The simple operation solves the complicated problem in the image segmentation process. At the same time, the sample image in the image segmentation application is selected to segment the image. The results show that the image segmentation system has a friendly interface and simple operation, and accurately realizes image segmentation, and obtains the related data of segmentation and the comparison with the segmentation results of similar algorithms. This study improves the simplicity and visualization of image segmentation.

References

[1]  安超, 李磊民, 黄玉清. 一种改进的基于SLIC的自适应GrabCut算法[J]. 自动化仪表, 2017, 38(10): 17-20.
[2]  李炳宇, 萧蕴诗, 汪镭. PSO算法在工程优化问题中的应用[J]. 计算机工程与应用, 2004, 40(18): 74-76.
[3]  王爱莲, 伍伟丽, 陈俊杰. 基于K-means聚类算法的图像分割方法比较及改进[J]. 太原理工大学学报, 2014, 45(3): 372-375.
[4]  张世勇. 基于混合PSO的K-means算法及并行化研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2007.
[5]  李磊. 基于MATLAB GUI的数字图像处理系统设计[D]: [硕士学位论文]. 成都: 成都理工大学, 2012.
[6]  李念念, 张红梅. 基于MATLAB GUI的信号与系统分析软件开发[J]. 工业控制计算机, 2011, 24(3): 19-21.
[7]  刘艳华. 数字调制系统的GUI用户界面设计[J]. 科技视界, 2018(2): 150-151.
[8]  黄冉, 杨本硕, 杨德平, 等. 基于MATLAB/GUI灰色预测系统开发及应用[J]. 青岛大学学报(工程技术版), 2014, 29(3): 32-37.
[9]  谢秀华, 李陶深. 一种基于改进PSO的K-means优化聚类算法[J]. 计算机技术与发展, 2014(2): 34-38.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133