|
Applied Physics 2019
多晶金属材料超声无损表征方法研究综述
|
Abstract:
[1] | Li, J., Yang, L. and Rokhlin, S.I. (2014) Effect of Texture and Grain Shape on Ultrasonic Backscattering in Polycrystals. Ultrasonics, 54, 1789-1803. https://doi.org/10.1016/j.ultras.2014.02.020 |
[2] | Thompson, R.B., Margetan, F.J., Haldipur, P., et al. (2008) Scattering of Elastic Waves in Simple and Complex Polycrystals. Wave Motion, 45, 655-674. https://doi.org/10.1016/j.wavemoti.2007.09.008 |
[3] | Yang, L., Li, J. and Rokhlin, S.I. (2013) Ultrasonic Scattering in Polycrystals with Orientation Clusters of Orthorhombic Crystallites. Wave Motion, 50, 1283-1302. https://doi.org/10.1016/j.wavemoti.2013.06.003 |
[4] | Du, H. and Turner, J.A. (2014) Ultrasonic Attenuation in Pearlitic Steel. Ultrasonics, 54, 882-887.
https://doi.org/10.1016/j.ultras.2013.10.017 |
[5] | Ballou, J.W. and Silverman, S. (1944) Sound Velocity Meas-urements. Textile Research, 14, 282-292.
https://doi.org/10.1177/004051754401400902 |
[6] | Schneider, W.C. and Burton, C.J. (1949) Determination of the Elastic Constants of Solids by Ultrasonic Methods. Journal of Applied Physics, 20, 48-58. https://doi.org/10.1063/1.1698236 |
[7] | Carnevale, E.H., Lynnworth, L.C. and Larson, G.S. (1963) Ultrasonic Measurement of Elastic Moduli at Elevated Temperatures, Using Momentary Contact. The Journal of the Acoustical Society of America, 35, 1883.
https://doi.org/10.1121/1.2142644 |
[8] | Smith, R.T., Stern, R., Stephens, R.W.B. (1966) Third-Order Elastic Moduli of Polycrystalline Metals from Ultrasonic Velocity Measurements. The Journal of the Acoustical Society of America, 40, 1002-1008.
https://doi.org/10.1121/1.1910179 |
[9] | Aussel, J.D. and Monchalin, J.P. (1989) Precision Laser-Ultrasonic Ve-locity Measurement and Elastic Constant Determination. Ultrasonics, 27, 165-177. https://doi.org/10.1016/0041-624X(89)90059-0 |
[10] | 陈以方, 张家骏. 超声检测工件弹性模量的研究[J]. 无损检测, 1997(9): 241-244. |
[11] | 何存富, 周辛庚, 戴福隆. 一种非接触式测定材料弹性常数的新方法[J]. 力学学报, 1997, 29(6): 720-725. |
[12] | 樊程广, 潘孟春, 罗飞路, 罗诗途, 谭项林. 复合材料弹性模量的激光超声测量方法研究[J]. 测试技术学报, 2012, 26(1): 78-82. |
[13] | 侯金弟, 等. 测量固体材料泊松比和杨氏模量的新方法[J]. 实验技术与管理, 2019, 36(4): 75-78. |
[14] | Firestone, F.A. (1946) The Supersonic Reflectoscope, an Instrument for In-specting the Interior of Solid Parts by Means of Sound Waves. The Journal of the Acoustical Society of America, 17, 287-299.
https://doi.org/10.1121/1.1916330 |
[15] | Sokolov, S.J. (1948) Absorption of Ultrasonic Oscillations by Solid Bodies. Dokl. Alcad. Nauk SSSR, 59, 883. |
[16] | Grayeli, N. and Shyne, J.C. (1984) Effect of Microstructure and Prior Austenite Grain Size on Acoustic Velocity and Attenuation in Steel. Review of Progress in Quantitative Nondestructive Evaluation, 4B, 927-937. |
[17] | Smith, R.L. (1982) The Effect of Grain Size Distribution on the Frequency Dependence of the Ultrasonic Attenuation in Polycrystalline Materials. Ultrasonics, 20, 211-214. https://doi.org/10.1016/0041-624X(82)90021-X |
[18] | 夏纪真, 陈文霖. 用超声衰减法检查锻模材料的晶粒度[J]. 无损检测, 1980, 2(4): 26-28. |
[19] | Stanke, F.E. and Kino, G.S. (1984) A Unified Theory for Elastic Wave Propa-gation in Polycrystalline Materials. The Journal of the Acoustical Society of America, 75, 665-681. https://doi.org/10.1121/1.390577 |
[20] | Hirsekorn, S. (1985) The Scattering of Ultrasonic Waves in Polycrystalline Materials with Texture. The Journal of the Acoustical Society of America, 77, 832-843. https://doi.org/10.1121/1.392052 |
[21] | Li, X., Song, Y., Liu, F., et al. (2015) Evaluation of Mean Grain Size Using the Multi-Scale Ultrasonic Attenuation Coefficient. NDT & E International, 72, 25-32. https://doi.org/10.1016/j.ndteint.2015.02.002 |
[22] | 张颖, 吴昊, 李彬, 李栋山. 20#钢不同晶粒度试件非线性超声特性实验研究[J]. 中国测试, 2016, 42(8): 123-126. |
[23] | Van Pamel, A., Brett, C.R., Huthwaite, P., et al. (2015) Fi-nite Element Modelling of Elastic Wave Scattering within a Polycrystalline Material in Two and Three Dimensions. The Journal of the Acoustical Society of America, 138, 2326-2336.
https://doi.org/10.1121/1.4931445 |
[24] | Chen, X., Wu, G., Chen, H., et al. (2019) A Multi-Parameter Ultrasonic Evaluation of Mean Grain Size Using Optimization. NDT & E International, 106, 10-17. https://doi.org/10.1016/j.ndteint.2019.05.003 |
[25] | 贺玲凤, 刘军. 声弹性技术[M]. 北京: 科学出版社, 2002: 134-140. |
[26] | Hughes, D.S. (1950) Ultrasonic Velocity in an Elastic Solid. Journal of Applied Physics, 21, 294-301.
https://doi.org/10.1063/1.1699656 |
[27] | Crecraft, D.I. (1967) The Measurement of Applied and Residual Stresses in Metals Using Ultrasonic Waves. Journal of Sound and Vibration, 5, 173-192. https://doi.org/10.1016/0022-460X(67)90186-1 |
[28] | Hsu, N.N. (1974) Acoustical Birefringence and the Use of Ultrasonic Waves for Experimental Stress Analysis. Experimental Mechanics, 14, 169-176. https://doi.org/10.1007/BF02323061 |
[29] | Allen, D.R. and Sayers, C.M. (1984) The Measurement of Residual Stress in Textured Steel Using an Ultrasonic Velocity Combinations Technique. Ultrasonics, 22, 179-188. https://doi.org/10.1016/0041-624X(84)90034-9 |
[30] | Karabutov, A., Devichensky, A., Ivochkin, A., et al. (2008) Laser Ultrasonic Diagnostics of Residual Stress. Ultrasonics, 48, 631-635. https://doi.org/10.1016/j.ultras.2008.07.006 |
[31] | Sanderson, R.M. and Shen, Y.C. (2010) Measurement of Resid-ual Stress Using Laser-Generated Ultrasound. International Journal of Pressure Vessels and Piping, 87, 762-765. https://doi.org/10.1016/j.ijpvp.2010.10.001 |
[32] | 路浩, 刘雪松, 杨建国, 方洪渊.激光全息小孔法验证超声波法残余应力无损测量[J]. 焊接学报, 2008(8): 77-79+117. |
[33] | Javadi, Y., Akhlaghi, M. and Najafabadi, M.A. (2013) Using Finite Element and Ultrasonic Method to Evaluate Welding Longitudinal Residual Stress through the Thickness in Austenitic Stainless Steel Plates. Materials & Design, 45, 628-642. https://doi.org/10.1016/j.matdes.2012.09.038 |
[34] | Pan, Q., Shao, C., Xiao, D., et al. (2019) Robotic Ultrasonic Measurement of Residual Stress in Complex Curved Surface Components. Applied Bionics and Biomechanics, 2019, 1-8. https://doi.org/10.1155/2019/2797896 |
[35] | 税国双, 汪越胜, 曲建民. 材料力学性能退化的超声无损检测与评价[J]. 力学进展, 2005, 35(1): 52-68. |
[36] | Hikata, A., Chick, B.B. and Elbaum, C. (1965) Dislocation Contribution to the Second Harmonic Generation of Ultrasonic Waves. Journal of Applied Physics, 36, 229. https://doi.org/10.1063/1.1713881 |
[37] | Hikata, A., Sewell, F.A. and Elbaum, C. (1966) Generation of Ultrasonic Second and Third Harmonics due to Dislocations. II. Physical Review, 151, 442-449. https://doi.org/10.1103/PhysRev.151.442 |
[38] | Buck, O. (1976) Harmonic Generation for Measurement of Internal Stresses as Produced by Dislocations. IEEE Transactions on Sonics and Ultrasonics, 23, 346-350. https://doi.org/10.1109/T-SU.1976.30889 |
[39] | Cantrell, J.H. and Yost, W.T. (1994) Acoustic Harmonic Genera-tion from Fatigue-Induced Dislocation Dipoles. Philosophical Magazine A, 69, 315-326. https://doi.org/10.1080/01418619408244346 |
[40] | Cantrell, J.H. and Yost, W.T. (2001) Nonlinear Ultrasonic Characterization of Fatigue Microstructures. International Journal of Fatigue, 23, 487-490. https://doi.org/10.1016/S0142-1123(01)00162-1 |
[41] | Na, J.K., Cantrell, J.H. and Yost, W.T. (1996) Linear and Nonlinear Ultrasonic Properties of Fatigued 410Cb Stainless Steel. https://doi.org/10.1007/978-1-4613-0383-1_176 |
[42] | Frouin, J., Sathish, S., Matikas, T.E., et al. (1999) Ultrasonic Linear and Nonlinear Behavior of Fatigued Ti-6Al-4V. Journal of Materials Research, 14, 1295-1298. https://doi.org/10.1557/JMR.1999.0176 |
[43] | Nagy, P.B. (1998) Fatigue Damage Assessment by Nonlinear Ul-trasonic Materials Characterization. Ultrasonics, 36, 375-381. https://doi.org/10.1016/S0041-624X(97)00040-1 |
[44] | Jhang, K.Y. and Kim, K.C. (1999) Evaluation of Material Degradation Using Nonlinear Acoustic Effect. Ultrasonics, 37, 39-44. https://doi.org/10.1016/S0041-624X(98)00045-6 |
[45] | Jhang, K.Y. (2000) Applications of Nonlinear Ultrasonics to the NDE of Material Degradation. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 47, 540-548. https://doi.org/10.1109/58.842040 |
[46] | Abeele, E.A.V.D., Johnson, P.A. and Sutin, A. (2000) Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS). Research in Nondestructive Evaluation, 12, 17-30. https://doi.org/10.1080/09349840009409646 |
[47] | 税国双, 汪越胜, Jianmin, 等. 利用直接激发Rayleigh表面波的方法测量材料的声学非线性系数[J]. 声学学报, 2008, 33(4): 378-384. |
[48] | Bai, X., Zhao, Y., Ma, J., et al. (2019) Grain-Size Distribution Effects on the Attenuation of Laser-Generated Ultrasound in α-Titanium Alloy. Materials, 12, 102. https://doi.org/10.3390/ma12010102 |
[49] | Bai, X., Zhao, Y., Ma, J., et al. (2019) Grain size Characterization by Laser-Based Ultrasonics Based on the Centroid Frequency Shift Method. Materials Characterization, 155, Article ID: 109800.
https://doi.org/10.1016/j.matchar.2019.109800 |
[50] | Bai, X., Tie, B., Schmitt, J.H., et al. (2018) Finite Element Modeling of Grain Size Effects on the Ultrasonic Microstructural Noise Backscattering in Polycrystalline Materials. Ultrasonics, 87, 182-202.
https://doi.org/10.1016/j.ultras.2018.02.008 |
[51] | 沈功田. 中国无损检测与评价技术的进展[J]. 无损检测, 2008(11): 787-793. |
[52] | 周正干, 孙广开. 先进超声检测技术的研究应用进展[J]. 机械工程学报, 2017, 53(22): 1-10. |