全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多晶金属材料超声无损表征方法研究综述
A Review of Ultrasonic Methods Used for Nondestructive Characterization of Polycrystalline Materials

DOI: 10.12677/APP.2019.911053, PP. 429-441

Keywords: 多晶材料,超声检测,弹性模量,晶粒度,应力,非线性表征
Polycrystalline Materials
, Ultrasonic Testing, Elastic Modulus, Grain Size, Stress, Nonlinear Characterization

Full-Text   Cite this paper   Add to My Lib

Abstract:

线性及非线性超声技术是多晶金属材料特性无损表征的主要研究方法。本文介绍了超声技术在多晶金属材料特性无损表征的研究与典型应用,包括对弹性模量、平均晶粒度、应力、力学性能退化等。通过超声表征结果探究金属材料的内部特性,对材料能否安全服役做出无损评价;阐述了与传统检测方法相比,超声表征方法在分析多晶金属材料的内部缺陷与特性方面具有的优势。最后介绍了本团队在超声与多晶微结构之间的相关性以及对多晶材料平均晶粒尺寸超声表征所展开的工作与研究,并提出了该领域需要进一步研究的方向与目标。
Properties of polycrystalline materials are mainly evaluated by the linear and nonlinear ultrasonic methods in a nondestructive way. This paper reviews some typical research and application of ultrasonic characterization on polycrystalline materials, such as the evaluation of elastic modulus, average grain size, stress, and mechanical properties degradation. These parameters obtained by ultrasonic technology were used to evaluate the safety of materials in service. Ultrasonic methods applied to analyze flaws in the materials have obvious advantages compared to the traditional de-tection methods. Meanwhile, the investigation of correlation between ultrasonic parameters and polycrystalline microstructure was presented, especially for the characterization of the average grain size of titanium alloy. At last, we showed potential research on ultrasonic nondestructive characterization of polycrystalline materials in the future.

References

[1]  Li, J., Yang, L. and Rokhlin, S.I. (2014) Effect of Texture and Grain Shape on Ultrasonic Backscattering in Polycrystals. Ultrasonics, 54, 1789-1803.
https://doi.org/10.1016/j.ultras.2014.02.020
[2]  Thompson, R.B., Margetan, F.J., Haldipur, P., et al. (2008) Scattering of Elastic Waves in Simple and Complex Polycrystals. Wave Motion, 45, 655-674.
https://doi.org/10.1016/j.wavemoti.2007.09.008
[3]  Yang, L., Li, J. and Rokhlin, S.I. (2013) Ultrasonic Scattering in Polycrystals with Orientation Clusters of Orthorhombic Crystallites. Wave Motion, 50, 1283-1302.
https://doi.org/10.1016/j.wavemoti.2013.06.003
[4]  Du, H. and Turner, J.A. (2014) Ultrasonic Attenuation in Pearlitic Steel. Ultrasonics, 54, 882-887.
https://doi.org/10.1016/j.ultras.2013.10.017
[5]  Ballou, J.W. and Silverman, S. (1944) Sound Velocity Meas-urements. Textile Research, 14, 282-292.
https://doi.org/10.1177/004051754401400902
[6]  Schneider, W.C. and Burton, C.J. (1949) Determination of the Elastic Constants of Solids by Ultrasonic Methods. Journal of Applied Physics, 20, 48-58.
https://doi.org/10.1063/1.1698236
[7]  Carnevale, E.H., Lynnworth, L.C. and Larson, G.S. (1963) Ultrasonic Measurement of Elastic Moduli at Elevated Temperatures, Using Momentary Contact. The Journal of the Acoustical Society of America, 35, 1883.
https://doi.org/10.1121/1.2142644
[8]  Smith, R.T., Stern, R., Stephens, R.W.B. (1966) Third-Order Elastic Moduli of Polycrystalline Metals from Ultrasonic Velocity Measurements. The Journal of the Acoustical Society of America, 40, 1002-1008.
https://doi.org/10.1121/1.1910179
[9]  Aussel, J.D. and Monchalin, J.P. (1989) Precision Laser-Ultrasonic Ve-locity Measurement and Elastic Constant Determination. Ultrasonics, 27, 165-177.
https://doi.org/10.1016/0041-624X(89)90059-0
[10]  陈以方, 张家骏. 超声检测工件弹性模量的研究[J]. 无损检测, 1997(9): 241-244.
[11]  何存富, 周辛庚, 戴福隆. 一种非接触式测定材料弹性常数的新方法[J]. 力学学报, 1997, 29(6): 720-725.
[12]  樊程广, 潘孟春, 罗飞路, 罗诗途, 谭项林. 复合材料弹性模量的激光超声测量方法研究[J]. 测试技术学报, 2012, 26(1): 78-82.
[13]  侯金弟, 等. 测量固体材料泊松比和杨氏模量的新方法[J]. 实验技术与管理, 2019, 36(4): 75-78.
[14]  Firestone, F.A. (1946) The Supersonic Reflectoscope, an Instrument for In-specting the Interior of Solid Parts by Means of Sound Waves. The Journal of the Acoustical Society of America, 17, 287-299.
https://doi.org/10.1121/1.1916330
[15]  Sokolov, S.J. (1948) Absorption of Ultrasonic Oscillations by Solid Bodies. Dokl. Alcad. Nauk SSSR, 59, 883.
[16]  Grayeli, N. and Shyne, J.C. (1984) Effect of Microstructure and Prior Austenite Grain Size on Acoustic Velocity and Attenuation in Steel. Review of Progress in Quantitative Nondestructive Evaluation, 4B, 927-937.
[17]  Smith, R.L. (1982) The Effect of Grain Size Distribution on the Frequency Dependence of the Ultrasonic Attenuation in Polycrystalline Materials. Ultrasonics, 20, 211-214.
https://doi.org/10.1016/0041-624X(82)90021-X
[18]  夏纪真, 陈文霖. 用超声衰减法检查锻模材料的晶粒度[J]. 无损检测, 1980, 2(4): 26-28.
[19]  Stanke, F.E. and Kino, G.S. (1984) A Unified Theory for Elastic Wave Propa-gation in Polycrystalline Materials. The Journal of the Acoustical Society of America, 75, 665-681.
https://doi.org/10.1121/1.390577
[20]  Hirsekorn, S. (1985) The Scattering of Ultrasonic Waves in Polycrystalline Materials with Texture. The Journal of the Acoustical Society of America, 77, 832-843.
https://doi.org/10.1121/1.392052
[21]  Li, X., Song, Y., Liu, F., et al. (2015) Evaluation of Mean Grain Size Using the Multi-Scale Ultrasonic Attenuation Coefficient. NDT & E International, 72, 25-32.
https://doi.org/10.1016/j.ndteint.2015.02.002
[22]  张颖, 吴昊, 李彬, 李栋山. 20#钢不同晶粒度试件非线性超声特性实验研究[J]. 中国测试, 2016, 42(8): 123-126.
[23]  Van Pamel, A., Brett, C.R., Huthwaite, P., et al. (2015) Fi-nite Element Modelling of Elastic Wave Scattering within a Polycrystalline Material in Two and Three Dimensions. The Journal of the Acoustical Society of America, 138, 2326-2336.
https://doi.org/10.1121/1.4931445
[24]  Chen, X., Wu, G., Chen, H., et al. (2019) A Multi-Parameter Ultrasonic Evaluation of Mean Grain Size Using Optimization. NDT & E International, 106, 10-17.
https://doi.org/10.1016/j.ndteint.2019.05.003
[25]  贺玲凤, 刘军. 声弹性技术[M]. 北京: 科学出版社, 2002: 134-140.
[26]  Hughes, D.S. (1950) Ultrasonic Velocity in an Elastic Solid. Journal of Applied Physics, 21, 294-301.
https://doi.org/10.1063/1.1699656
[27]  Crecraft, D.I. (1967) The Measurement of Applied and Residual Stresses in Metals Using Ultrasonic Waves. Journal of Sound and Vibration, 5, 173-192.
https://doi.org/10.1016/0022-460X(67)90186-1
[28]  Hsu, N.N. (1974) Acoustical Birefringence and the Use of Ultrasonic Waves for Experimental Stress Analysis. Experimental Mechanics, 14, 169-176.
https://doi.org/10.1007/BF02323061
[29]  Allen, D.R. and Sayers, C.M. (1984) The Measurement of Residual Stress in Textured Steel Using an Ultrasonic Velocity Combinations Technique. Ultrasonics, 22, 179-188.
https://doi.org/10.1016/0041-624X(84)90034-9
[30]  Karabutov, A., Devichensky, A., Ivochkin, A., et al. (2008) Laser Ultrasonic Diagnostics of Residual Stress. Ultrasonics, 48, 631-635.
https://doi.org/10.1016/j.ultras.2008.07.006
[31]  Sanderson, R.M. and Shen, Y.C. (2010) Measurement of Resid-ual Stress Using Laser-Generated Ultrasound. International Journal of Pressure Vessels and Piping, 87, 762-765.
https://doi.org/10.1016/j.ijpvp.2010.10.001
[32]  路浩, 刘雪松, 杨建国, 方洪渊.激光全息小孔法验证超声波法残余应力无损测量[J]. 焊接学报, 2008(8): 77-79+117.
[33]  Javadi, Y., Akhlaghi, M. and Najafabadi, M.A. (2013) Using Finite Element and Ultrasonic Method to Evaluate Welding Longitudinal Residual Stress through the Thickness in Austenitic Stainless Steel Plates. Materials & Design, 45, 628-642.
https://doi.org/10.1016/j.matdes.2012.09.038
[34]  Pan, Q., Shao, C., Xiao, D., et al. (2019) Robotic Ultrasonic Measurement of Residual Stress in Complex Curved Surface Components. Applied Bionics and Biomechanics, 2019, 1-8.
https://doi.org/10.1155/2019/2797896
[35]  税国双, 汪越胜, 曲建民. 材料力学性能退化的超声无损检测与评价[J]. 力学进展, 2005, 35(1): 52-68.
[36]  Hikata, A., Chick, B.B. and Elbaum, C. (1965) Dislocation Contribution to the Second Harmonic Generation of Ultrasonic Waves. Journal of Applied Physics, 36, 229.
https://doi.org/10.1063/1.1713881
[37]  Hikata, A., Sewell, F.A. and Elbaum, C. (1966) Generation of Ultrasonic Second and Third Harmonics due to Dislocations. II. Physical Review, 151, 442-449.
https://doi.org/10.1103/PhysRev.151.442
[38]  Buck, O. (1976) Harmonic Generation for Measurement of Internal Stresses as Produced by Dislocations. IEEE Transactions on Sonics and Ultrasonics, 23, 346-350.
https://doi.org/10.1109/T-SU.1976.30889
[39]  Cantrell, J.H. and Yost, W.T. (1994) Acoustic Harmonic Genera-tion from Fatigue-Induced Dislocation Dipoles. Philosophical Magazine A, 69, 315-326.
https://doi.org/10.1080/01418619408244346
[40]  Cantrell, J.H. and Yost, W.T. (2001) Nonlinear Ultrasonic Characterization of Fatigue Microstructures. International Journal of Fatigue, 23, 487-490.
https://doi.org/10.1016/S0142-1123(01)00162-1
[41]  Na, J.K., Cantrell, J.H. and Yost, W.T. (1996) Linear and Nonlinear Ultrasonic Properties of Fatigued 410Cb Stainless Steel.
https://doi.org/10.1007/978-1-4613-0383-1_176
[42]  Frouin, J., Sathish, S., Matikas, T.E., et al. (1999) Ultrasonic Linear and Nonlinear Behavior of Fatigued Ti-6Al-4V. Journal of Materials Research, 14, 1295-1298.
https://doi.org/10.1557/JMR.1999.0176
[43]  Nagy, P.B. (1998) Fatigue Damage Assessment by Nonlinear Ul-trasonic Materials Characterization. Ultrasonics, 36, 375-381.
https://doi.org/10.1016/S0041-624X(97)00040-1
[44]  Jhang, K.Y. and Kim, K.C. (1999) Evaluation of Material Degradation Using Nonlinear Acoustic Effect. Ultrasonics, 37, 39-44.
https://doi.org/10.1016/S0041-624X(98)00045-6
[45]  Jhang, K.Y. (2000) Applications of Nonlinear Ultrasonics to the NDE of Material Degradation. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 47, 540-548.
https://doi.org/10.1109/58.842040
[46]  Abeele, E.A.V.D., Johnson, P.A. and Sutin, A. (2000) Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS). Research in Nondestructive Evaluation, 12, 17-30.
https://doi.org/10.1080/09349840009409646
[47]  税国双, 汪越胜, Jianmin, 等. 利用直接激发Rayleigh表面波的方法测量材料的声学非线性系数[J]. 声学学报, 2008, 33(4): 378-384.
[48]  Bai, X., Zhao, Y., Ma, J., et al. (2019) Grain-Size Distribution Effects on the Attenuation of Laser-Generated Ultrasound in α-Titanium Alloy. Materials, 12, 102.
https://doi.org/10.3390/ma12010102
[49]  Bai, X., Zhao, Y., Ma, J., et al. (2019) Grain size Characterization by Laser-Based Ultrasonics Based on the Centroid Frequency Shift Method. Materials Characterization, 155, Article ID: 109800.
https://doi.org/10.1016/j.matchar.2019.109800
[50]  Bai, X., Tie, B., Schmitt, J.H., et al. (2018) Finite Element Modeling of Grain Size Effects on the Ultrasonic Microstructural Noise Backscattering in Polycrystalline Materials. Ultrasonics, 87, 182-202.
https://doi.org/10.1016/j.ultras.2018.02.008
[51]  沈功田. 中国无损检测与评价技术的进展[J]. 无损检测, 2008(11): 787-793.
[52]  周正干, 孙广开. 先进超声检测技术的研究应用进展[J]. 机械工程学报, 2017, 53(22): 1-10.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133