|
Applied Physics 2019
Mn3Cu0.5Zn0.5N压力下的磁转变研究
|
Abstract:
[1] | Liu, Y.S., Hua, F.C. and Hong, M.J. (2005) Large Magnetoresistance under a Low Applied Magnetic Field in a Cu-Dependent Material Coated-La_(2/3)Ca_(1/3)MnO_3 Granular System. Journal of Inorganic Materials, No. 3. |
[2] | Chi, E.O., Kim, W.S. and Hur, N.H. (2001) Nearly Zero Temperature Coefficient of Resistivity in Antiperovskite Compound CuNMn(3). Solid State Communications, 120, 307-310. https://doi.org/10.1016/S0038-1098(01)00395-7 |
[3] | Asano, K., Koyama, K. and Takenaka, K. (2008) Magnetostriction in Mn3CuN. Applied Physics Letters, 92, Article ID: 161909. https://doi.org/10.1063/1.2917472 |
[4] | Barrera, G.D., Bruno, J.A.O., Barron, T.H.K. and Allan, A.L. (2005) Negative Thermal Expansion. Journal of Physics: Condensed Matter, 17, R217-R252. https://doi.org/10.1088/0953-8984/17/4/R03 |
[5] | Sun, Y., Wang, C., Wen, Y.C., Zhu, K.G. and Zhao, J.T. (2007) Lattice Contraction and Magnetic and Electronic Transport Properties of Mn3Zn1-xGexN. Applied Physics Letters, 91, Article ID: 231913.
https://doi.org/10.1063/1.2822813 |
[6] | Takenaka, K. and Takagi, H. (2005) Giant Negative Thermal Expansion in Ge-Doped Anti-Perovskite Manganese Nitrides. Applied Physics Letters, 87, Article ID: 261902. https://doi.org/10.1063/1.2147726 |
[7] | Qu, B.Y. and Pan, B.C. (2010) Nature of the Negative Thermal Expansion in Antiperovskite Compound Mn3ZnN. Journal of Applied Physics, 108, Article ID: 113920. https://doi.org/10.1063/1.3517824 |
[8] | Huang, R.J., Li, L., et al. (2010) Spin-Glass Behavior in the Antiperovskite Manganese Nitride Mn3CuN Codoped with Ge and Si. Solid State Communications, 150, 1617-1620. https://doi.org/10.1016/j.ssc.2010.06.041 |
[9] | Huang, R.J., Li, L., Cai, F., Xu, X. and Qian, L. (2008) Low-Temperature Negative Thermal Expansion of the Antiperovskite Manganese Nitride Mn3CuN Codoped with Ge and Si. Applied Physics Letters, 93, Article ID: 081902.
https://doi.org/10.1063/1.2970998 |
[10] | Shibayamaa, T. and Takenaka, K. (2011) Giant Magnetostriction in Antiperovskite Mn3CuN. Journal of Applied Physics, 109, Article ID: 07A928. https://doi.org/10.1063/1.3560892 |
[11] | Antonova, V.N. and Bekenov, L.V. (2014) Electronic Structure and X-Ray Magnetic Circular Dichroism in the Mn3CuN Perovskite. Low Temperature Physics, 40, 641. https://doi.org/10.1063/1.4887062 |
[12] | Yin, Y., Han, J.C., Yuan. Q., Ling, L.S. and Song, B. (2013) Critical Behavior in the Antiperovskite Mn3CuN at Ferromagnetic to Paramagnetic Phasetransition. Journal of Magnetism and Magnetic Materials, 346, 203-208.
https://doi.org/10.1016/j.jmmm.2013.07.041 |
[13] | Yan, J., Sun, Y., et al. (2014) Phase Transitions and Magnetocaloric Effect in Mn3Cu0.89N0.96. Acta Materialia, 74, 58-65. https://doi.org/10.1016/j.actamat.2014.04.005 |
[14] | Muhammad, I.M., Sun, Y., et al. (2016) Competition between Ferromagnetic and Antiferromagnetic Interactions by Cr Doping at Mn Sites in Antiperovskite Mn3-xCrxZnN (0 ≤ x ≤ 0.5) Compounds. Physica B, 488, 19-23.
https://doi.org/10.1016/j.physb.2016.02.010 |