全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

使用LightGBM识别城市道路格网模式
Identifying Grid Pattern of Urban Road Networks Using LightGBM

DOI: 10.12677/GST.2020.81001, PP. 1-8

Keywords: LightGBM,格网模式,道路网模式识别,网眼形态
LightGBM
, Grid Pattern, Road Network Pattern Recognition, Mesh Shape

Full-Text   Cite this paper   Add to My Lib

Abstract:

在分析格网模式下城市道路网几何形态及空间分布特点的基础上,运用矩形度、平行度、主方向一致度、质心方向一致度、形状相似度等指标描述道路网眼特征,构建道路网模式识别输入参数组合,然后应用LightGBM方法对道路网眼进行分类,根据输出结果识别道路网格网模式。实验结果表明,该方法可以比较准确地识别城市道路网格网模式。
Based on the analysis of the geometric appearance and spatial arrangement characteristics of ur-ban road networks in grid pattern, the features of the road mesh are described by using the indi-cators of rectangularity, parallelism, main direction similarity, centroid direction similarity and shape similarity, formed a combination of parameters for model input of pattern recognition of road networks, then, use LightGBM to classify road mesh and identify the grid pattern of road networks according to the output. The experimental results show that the method can accurately identify the grid pattern of urban road networks.

References

[1]  李德仁, 李清泉, 杨必胜, 等. 3S技术与智能交通[J]. 武汉大学学报: 信息科学版, 2008, 33(4): 332-336.
[2]  李清泉, 萧世伦, 方志祥, 等. 交通地理信息系统技术与前沿发展[M]. 北京: 科学出版社, 2012: 1-7.
[3]  Zhang, Q.N. (2004) Modeling Structure Patterns in Road Network Generalization. ICA Workshop on Generalization and Mul-tiple Representation, Leicester.
[4]  Heinzle, F., Anders, K.H. and Sester, M. (2006) Pattern Recognition in Road Networks on the Example of Circular Road Detection. Geographic Information Science, 4197, 153-167.
[5]  Heinzle, F., Anders, K.H. and Sester M. (2007) Automatic Detection of Patterns in Road Networks—Method and Evaluation. ISPTS Joint Workshop “Visualization and Exploration of Geospatial Data”, Stuttgart, Germany.
[6]  Yang, B.S., Luan, X.C. and Li, Q.Q. (2010) An Adaptive Method for Identifying the Spatial Patterns in Road Networks. Computers, Environment and Urban Systems, 34, 40-48.
https://doi.org/10.1016/j.compenvurbsys.2009.10.002
[7]  田晶, 艾廷华, 丁绍军. 基于C4.5算法的道路网网格模式识别[J]. 测绘学报, 2012, 41(1): 121-126.
[8]  巩现勇, 武芳, 焦洋洋, 等. 基于关联规则分类的道路网网格模式识别[J]. 测绘科学技术学报, 2013, 30(6): 633-637.
[9]  何亚坤, 艾廷华, 杜欣, 等. 网络空间向量剖分法识别城市路网网格模式[J]. 武汉大学学报(信息科学版), 2018, 43(1): 138-139.
[10]  Ke, G., Meng, Q., Finley, T., et al. (2017) LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, 3149-3157.
[11]  李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 67-87.
[12]  胡云岗, 陈军, 李志林, 等. 基于网眼密度的道路选取方法[J]. 测绘学报, 2007, 36(3): 351-357.
[13]  Rosin, P. (1999) Measuring Rectangularity. Machine Vision and Applications, 11, 191-196.
[14]  栾学晨, 范红超, 杨必胜, 等. 城市道路网主干道提取的形态分析方法[J]. 武汉大学学报(信息科学版), 2014, 39(3): 327-331.
[15]  田晶, 张泊宇, 杨雯雨. 对自组织映射聚类实现道路网网格模式识别[J]. 武汉大学学报(信息科学版), 2013, 38(11): 1330-1334.
[16]  Zou, K., O’Malley, A.J. and Mauri, L. (2007) Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models. Circulation, 115, 645-657.
https://doi.org/10.1161/CIRCULATIONAHA.105.594929
[17]  崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10): 3068-3090.
[18]  周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 26-27.
[19]  Ellis, W. (1938) A Source Book of Gestalt Psychology. Routledge & Kegan Paul, Lon-don.
https://doi.org/10.1037/11496-000

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133