全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

10种元素参与生姜生长发育与品质形成的研究进展
Research Progress of 10 Elements Involved in Ginger Growth and Quality Formation

DOI: 10.12677/HJAS.2019.911139, PP. 989-996

Keywords: 元素,生姜,生长,影响
Elements
, Ginger, Growth, Impact

Full-Text   Cite this paper   Add to My Lib

Abstract:

生姜作为一种重要的药食两用型蔬菜,在我国种植面积、产量、出口量长期以来一直保持在世界首位。多种元素已被证实对于植物的生长元素对于生姜的生长发育、品质形成具有极为重要的作用。本文通过对多年来,元素在生姜中的作用研究进行梳理,以期为生姜的品种繁育、品质提档升级、元素作用分子机理研究提供一些参考。
Ginger, as an important medicinal and edible vegetable, has been cultivated in China for a long time in terms of area, yield and export volume. Various elements have been proved to play an important role in the growth and quality of ginger. In this paper, the role of elements in ginger has been studied for many years, in order to provide some references for the research on the variety breeding, quality upgrading and molecular mechanism of element action of ginger.

References

[1]  王国强, 位思清, 李宁阳, 等. 生姜红枣软糖的研制[J]. 食品工业, 2018, 39(12): 26-29.
[2]  刘波, 缪军, 吴雄. 生姜研究进展[J]. 黑龙江农业科学, 2011(5): 135-138.
[3]  刘波. 生姜生物学及栽培生理研究进展[J]. 农业科技通讯, 2011(7): 201-203.
[4]  吴嘉斓, 王笑园, 王坤立, 等. 生姜营养价值及药理作用研究进展[J]. 食品工业, 2019, 40(2): 237-240.
[5]  刘帅, 陈明均, 贺坦, 等. 2018年我国生姜市场回顾与2019年行情展望[J]. 中国蔬菜, 2019, 360(2): 1-4.
[6]  田德远, 阳新平. 凤头姜施用中微量元素肥料效果研究[J]. 现代农业科技, 2017(9): 93+99.
[7]  Becana, M., Wienkoop, S. and Matamoros, M.A. (2018) Sulfur Transport and Metabolism in Legume Root Nodules. Frontiers in Plant Science, 9, 1434.
https://doi.org/10.3389/fpls.2018.01434
[8]  Maruyama-Nakashita, A., Watanabe-Takahashi, A., Inoue, E., et al. (2015) Sulfur-Responsive Elements in the 3’-Nontranscribed Intergenic Region Are Essential for the Induction of Sulfate Transporter 2; 1 Gene Expression in Arabidopsis Roots under Sulfur Deficiency. Plant Cell, 27, 1279-1296.
https://doi.org/10.1105/tpc.114.134908
[9]  魏波. 硫化物调控拟南芥叶片衰老的机理研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2016.
[10]  耿计彪, 张超, 李强, 等. 硫肥对小油菜产量、品质及生理特征的影响[J]. 中国土壤与肥料, 2018(4): 121-125.
[11]  吴萍萍, 王家嘉, 李录久. 氮、硫配施对生姜产量和品质的影响[J]. 中国土壤与肥料, 2015(1): 24-28.
[12]  罗振明, 谢庆恩, 王瑞芳, 赵凯. 安丘生姜增施硫肥试验初探[J]. 中国农学通报, 2015, 31(30): 197-200.
[13]  Romero, A.M., Martínez-Pastor, M., Du, G., et al. (2018) Phosphorylation and Proteasome Recognition of the mRNA-Binding Protein Cth2 Facilitates Yeast Adaptation to Iron Deficiency. Mbio, 9, e01694.
https://doi.org/10.1128/mBio.01694-18
[14]  徐素萍. 微量元素铁与人体健康的关系[J]. 中国食物与营养, 2007(12): 51-54.
[15]  Senoura, T., Sakashita, E., Kobayashi, T., et al. (2017) The Iron-Chelate Transporter OsYSL9 Plays a Role in Iron Distribution in Developing Rice Grains. Plant Molecular Biology, 95, 375-387.
https://doi.org/10.1007/s11103-017-0656-y
[16]  Kobayashi, T. (2019) Understanding the Complexity of Iron Sensing and Signaling Cascades in Plants. Plant and Cell Physiology, 60, 1440-1446.
https://doi.org/10.1093/pcp/pcz038
[17]  Lefèvre, F., Fourmeau, J., Pottier, M., et al. (2018) The Nicotiana tabacum ABC Transporter NtPDR3 Secretes O-Methylated Coumarins in Response to Iron Deficiency. Journal of Experimental Botany, 69, 4419-4431.
https://doi.org/10.1093/jxb/ery221
[18]  陈新. 离子液体光度法测生姜中微量铁[J]. 南京晓庄学院学报, 2015, 31(6): 51-53.
[19]  段玲利, 张玉, 李玉梅, 等. 三种植物调味料中铜、铁微量元素的测定[J]. 蔬菜, 2014(6): 9-11.
[20]  程虎虎, 马桂秀. 锌、硼、铁微量元素肥料在安丘市生姜上的应用效果探析[J]. 中国农业信息, 2017(21): 68-71.
[21]  Zhang, Z.H., Zhou, T., Liao, Q., et al. (2018) Integrated Physiologic, Genomic and Tran-scriptomic Strategies Involving the Adaptation of Allotetraploid Rapeseed to Nitrogen Limitation. BMC Plant Biology, 18, 322.
https://doi.org/10.1186/s12870-018-1507-y
[22]  Cukier, C., Lea, P.J., Ca?as, R., Marmagne, A., et al. (2018) La-beling Maize (Zea mays L.) Leaves with 15 NH4+ and Monitoring Nitrogen Incorporation into Amino Acids by GC/MS Analysis. Current Protocols in Plant Biology, 3, e20073.
https://doi.org/10.1002/cppb.20073
[23]  郭衍银, 王秀锋, 徐坤, 等. 根结线虫对生姜大量元素吸收特性的影响[J]. 西北农业学报, 2003, 12(4): 93-97.
[24]  Zhang, C., Meng, S., Li, M. and Zhao, Z. (2018) Transcriptomic Insight into Nitrogen Uptake and Metabolism of Populus simonii in Response to Drought and Low Nitrogen Stresses. Tree Physiology, 38, 1672-1684.
https://doi.org/10.1093/treephys/tpy085
[25]  吴萍萍, 王家嘉, 李录久. 氮硫配施对生姜生长和氮素吸收的影响[J]. 植物营养与肥料学报, 2015, 21(1): 251-258.
[26]  李录久, 刘荣乐, 陈防, 等. 不同氮水平对生姜产量和品质及氮素吸收的影响[J]. 植物营养与肥料学报, 2010, 16(2): 382-388.
[27]  徐坤. 氮肥对生姜生长及产量的影响[J]. 中国蔬菜, 1999(6): 17-19.
[28]  Zhan, L.P., Peng, D.L., Wang, X.L., et al. (2018) Priming Effect of Root-Applied Silicon on the Enhancement of Induced Resistance to the Root-Knot Nematode Meloidogyne Graminicola in Rice. BMC Plant Biology, 18, 50.
https://doi.org/10.1186/s12870-018-1266-9
[29]  Geng, A., Wang, X., Wu, L., et al. (2018) Silicon Improves Growth and Alleviates Oxidative Stress in Rice Seedlings (Oryza sativa L. ) by Strengthening Antioxidant Defense and Enhancing Protein Metabolism under Arsanilic Acid Exposure. Ecotoxicology and Environmental Safety, 158, 266-273.
https://doi.org/10.1016/j.ecoenv.2018.03.050
[30]  Hasanuzzaman, M., Nahar, K., Anee, T.I., et al. (2017) Exoge-nous Silicon Attenuates Cadmium-Induced Oxidative Stress in Brassica napus L. by Modulating AsA-GSH Pathway and Glyoxalase System. Frontiers in Plant Science, 8, 1061.
https://doi.org/10.3389/fpls.2017.01061
[31]  Zhang, G.Q., Xu, K., Wang, X.C., et al. (2008) Effects of Silicon on Exchange Characteristics of H2O and CO2 in Ginger Leaves. The Journal of Applied Ecology, 19, 1702-1707.
[32]  姚红燕, 苏中晓, 李爱科, 等. 增施硅肥对生姜的影响研究[J]. 农业与技术, 2015, 35(4): 101.
[33]  朱瑞华, 蒲海涛, 魏艳杰, 等. 硅肥对平度生姜植株生长及产量的影响[J]. 中国农技推广, 2016, 32(11): 52-54.
[34]  Kaats, G.R., Preuss, H.G., Stohs, S., et al. (2016) A 7-Year Longitudinal Trial of the Safety and Efficacy of a Vitamin/Mineral Enhanced Plant-Sourced Calcium Supplement. The Journal of the American College of Nutrition, 35, 91-99.
https://doi.org/10.1080/07315724.2015.1090357
[35]  Yang, D.L., Shi, Z., Bao, Y., et al. (2017) Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity. Plant Physiology, 175, 424-437.
https://doi.org/10.1104/pp.17.00495
[36]  徐坤, 康立美, 赵德婉. 生姜对钙镁硼锌吸收分配规律的研究[J]. 山东农业科学, 1993(5): 21-23.
[37]  党现什, 蒋春姬, 李憬霖, 等. 钙肥对花生产量及生理特性的影响[J]. 沈阳农业大学学报, 2018, 49(6): 717-723
[38]  赵亚飞, 张彩军, 孟谣, 等. 不同施钙量对花生荚果发育时期农艺性状的影响[J]. 花生学报, 2019, 48(1): 27-33+57.
[39]  许仙菊, 张永春. 植物耐低磷胁迫的根系适应性机制研究进展[J]. 江苏农业学报, 2018, 34(6): 1425-1429.
[40]  Oke, M., Ahn, T., Schofield, A. and Paliyath, G. (2005) Effects of Phosphorus Fertilizer Supplementation on Processing Quality and Functional Food Ingredients in Tomato. Journal of Agricultural and Food Chemistry, 53, 1531-1538.
https://doi.org/10.1021/jf0402476
[41]  Huang, G., Rizwan, M.S., Ren, C., et al. (2018) Influence of Phosphorous Fertilization on Copper Phytoextraction and Antioxidant Defenses in Castor Bean (Ricinus communis L.). Environmental Science and Pollution Research, 25, 115-123.
https://doi.org/10.1007/s11356-016-8132-9
[42]  王馨笙, 徐坤, 杨天慧. 生姜对氮、磷、钾吸收分配规律研究[J]. 植物营养与肥料学报, 2010, 16(6): 1515-1520.
[43]  陈奇, 杨玉梅, 刘建平, 等. 生姜“3414”肥效试验[J]. 现代农业科技, 2013(1): 75-76.
[44]  Huang, H., Ouyang, W., Wu, H., et al. (2017) Long-Term Diffuse Phosphorus Pollution Dynamics under the Combined Influence of Land Use and Soil Property Variations. Science of the Total Envi-ronment, 579, 1894-1903.
https://doi.org/10.1016/j.scitotenv.2016.11.198
[45]  Jalali, M. and Jalali, M. (2017) Assessment Risk of Phospho-rus Leaching from Calcareous Soils Using Soil Test Phosphorus. Chemosphere, 171, 106-117.
https://doi.org/10.1016/j.chemosphere.2016.12.042
[46]  Khatun, M.A., Hossain, M.M., Bari, M.A., et al. (2018) Zinc Deficiency Tolerance in Maize Is Associated with the Up-Regulation of Zn Transporter Genes and Antioxidant Ac-tivities. Plant Biology, 20, 765-770.
https://doi.org/10.1111/plb.12837
[47]  Zhang, J., Wang, S., Song, S., et al. (2019) Transcriptomic and Proteomic Analyses Reveal New Insight into Chlorophyll Synthesis and Chloroplast Structure of Maize Leaves under Zinc Defi-ciency Stress. Journal of Proteomics, 199, 123-134.
https://doi.org/10.1016/j.jprot.2019.03.001
[48]  张莹. 锌污染对土壤和植物的影响[J]. 度假旅游, 2018(8): 86-87.
[49]  Zhao, A.Q., Tian, X.H., Cao, Y.X., et al. (2014) Compari-son of Soil and Foliar Zinc Application for Enhancing Grain Zinc Content of Wheat When Grown on Potentially Zinc-Deficient Calcareous Soils. Journal of the Science of Food and Agriculture, 94, 2016-2022.
https://doi.org/10.1002/jsfa.6518
[50]  Iqbal, M.N., Rasheed, R., Ashraf, M.Y., et al. (2018) Exogenously Applied Zinc and Copper Mitigate Salinity Effect in Maize (Zea mays L.) by Improving Key Physiological and Biochemical At-tributes. Environmental Science and Pollution Research, 25, 23883-23896.
https://doi.org/10.1007/s11356-018-2383-6
[51]  Wang, X., Hao, L., Zhu, B. and Jiang, Z. (2018) Plant Calcium Signaling in Response to Potassium Deficiency. International Journal of Molecular Sciences, 19, 3456.
https://doi.org/10.3390/ijms19113456
[52]  Lu, Z., Xie, K., Pan, Y., et al. (2019) Potassium Mediates Coordination of Leaf Photosynthesis and Hydraulic Conductance by Modifications of Leaf Anatomy. Plant, Cell & Environment, 42, 2231-2244.
https://doi.org/10.1111/pce.13553
[53]  Tian, G., Wang, F., Peng, L., et al. (2017) Effects of Different Potassium Levels on Growth and NO3-Uptake and Utilization of Malus hupehensis Seedlings. The Journal of Applied Ecology, 28, 2254-2260.
[54]  Liang, T.B., Wang, Z.L., Wang, R.J., et al. (2007) Effects of Potassium Humate on Ginger Root Growth and Its Active Oxygen Metabolism. The Journal of Applied Ecology, 18, 813-817.
[55]  Rachkeeree, A., Kan-tadoung, K., Suksathan, R., et al. (2018) Nutritional Compositions and Phytochemical Properties of the Edible Flowers from Selected Zingiberaceae Found in Thailand. Frontiers in Nutrition, 5, 3.
https://doi.org/10.3389/fnut.2018.00003
[56]  李富兰, 斯维, 周雪松, 等. 生姜中钾的提取工艺研究[J]. 中国调味品, 2017, 42(3): 91-93.
[57]  穆洪海, 臧丽青, 于继娥, 等. 五莲县山区生姜钾素梯度试验研究[J]. 中国果菜, 2012(3): 26-27.
[58]  Volkotrub, L.P. and Andropova, T.V. (2004) Role of Selenium in the Etiology and Prevention of Diseases (Review). Gigiena i Sanitariia, 3, 57-61.
[59]  Chen, L., Yang, F., Xu, J., et al. (2002) Determination of Sele-nium Concentration of Rice in China and Effect of Fertilization of Selenite and Selenate on Selenium Content of Rice. Journal of Agricultural and Food Chemistry, 50, 5128-5130.
https://doi.org/10.1021/jf0201374
[60]  Ip, C. and Lisk, D.J. (2004) Bioavailability of Selenium from Selenium-Enriched Garlic. Nutrition and Cancer, 20, 129-137.
https://doi.org/10.1080/01635589309514279
[61]  Yan, L. and Johnson, L.K. (2011) Selenium Bioavailability from Naturally Produced High-Selenium Peas and Oats in Selenium-Deficient Rats. Journal of Agricultural and Food Chem-istry, 59, 6305-6311.
https://doi.org/10.1021/jf201053s
[62]  Wadgaonkar, S.L., Nancharaiah, Y.V., Esposito, G., et al. (2018) Environ-mental Impact and Bioremediation of Seleniferous Soils and Sediments. Critical Reviews in Biotechnology, 38, 941-956.
https://doi.org/10.1080/07388551.2017.1420623
[63]  吕臣浩, 邓小芳, 陈友恩, 等. 生姜硒营养特性研究[J]. 中国土壤与肥料, 2019, 279(1): 117-121.
[64]  Hajiboland, R., Bahrami-Rad, S. and Bastani, S. (2013) Phenolics Me-tabolism in Boron-Deficient Tea [Camellia sinensis (L.) O. Kuntze] Plants. Acta Biologica Hungarica, 64, 196-206.
https://doi.org/10.1556/ABiol.64.2013.2.6
[65]  Chatterjee, M., Liu, Q., Menello, C., et al. (2017) The Combined Action of Duplicated Boron Transporters Is Required for Maize Growth in Boron-Deficient Conditions. Genetics, 206, 2041-2051.
https://doi.org/10.1534/genetics.116.198275
[66]  Hanaoka, H., Uraguchi, S., Takano, J., et al. (2014) OsNIP3;1, a Rice Boric Acid Channel, Regulates Boron Distribution and Is Essential for Growth under Boron-Deficient Conditions. The Plant Journal, 78, 890-902.
https://doi.org/10.1111/tpj.12511
[67]  Wang, Q., Lu, L., Wu, X., et al. (2004) Boron Influences Pollen Germina-tion and Pollen Tube Growth in Picea meyeri. Tree Physiology, 23, 345-351.
https://doi.org/10.1093/treephys/23.5.345
[68]  Lukaszewski, K.M. and Blevins, D.G. (1996) Root Growth Inhibi-tion in Boron-Deficient or Aluminum-Stressed Squash May Be a Result of Impaired Ascorbate Metabolism. Plant Physi-ology, 112, 1135-1140.
https://doi.org/10.1104/pp.112.3.1135
[69]  Camacho-Cristobal, J.J. and Gonzalez-Fontes, A. (1999) Boron Defi-ciency Causes a Drastic Decrease in Nitrate Content and Nitrate Reductase Activity, and Increases the Content of Carbo-hydrates in Leaves from Tobacco Plants. Planta, 209, 528-536.
https://doi.org/10.1007/s004250050757
[70]  张乃国, 杨贵华, 李春梅, 等. 硼、锌对莱芜大姜生长发育及产量的影响[J]. 农业科技通讯, 2006(1): 44-45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133