|
10种元素参与生姜生长发育与品质形成的研究进展
|
Abstract:
[1] | 王国强, 位思清, 李宁阳, 等. 生姜红枣软糖的研制[J]. 食品工业, 2018, 39(12): 26-29. |
[2] | 刘波, 缪军, 吴雄. 生姜研究进展[J]. 黑龙江农业科学, 2011(5): 135-138. |
[3] | 刘波. 生姜生物学及栽培生理研究进展[J]. 农业科技通讯, 2011(7): 201-203. |
[4] | 吴嘉斓, 王笑园, 王坤立, 等. 生姜营养价值及药理作用研究进展[J]. 食品工业, 2019, 40(2): 237-240. |
[5] | 刘帅, 陈明均, 贺坦, 等. 2018年我国生姜市场回顾与2019年行情展望[J]. 中国蔬菜, 2019, 360(2): 1-4. |
[6] | 田德远, 阳新平. 凤头姜施用中微量元素肥料效果研究[J]. 现代农业科技, 2017(9): 93+99. |
[7] | Becana, M., Wienkoop, S. and Matamoros, M.A. (2018) Sulfur Transport and Metabolism in Legume Root Nodules. Frontiers in Plant Science, 9, 1434. https://doi.org/10.3389/fpls.2018.01434 |
[8] | Maruyama-Nakashita, A., Watanabe-Takahashi, A., Inoue, E., et al. (2015) Sulfur-Responsive Elements in the 3’-Nontranscribed Intergenic Region Are Essential for the Induction of Sulfate Transporter 2; 1 Gene Expression in Arabidopsis Roots under Sulfur Deficiency. Plant Cell, 27, 1279-1296. https://doi.org/10.1105/tpc.114.134908 |
[9] | 魏波. 硫化物调控拟南芥叶片衰老的机理研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2016. |
[10] | 耿计彪, 张超, 李强, 等. 硫肥对小油菜产量、品质及生理特征的影响[J]. 中国土壤与肥料, 2018(4): 121-125. |
[11] | 吴萍萍, 王家嘉, 李录久. 氮、硫配施对生姜产量和品质的影响[J]. 中国土壤与肥料, 2015(1): 24-28. |
[12] | 罗振明, 谢庆恩, 王瑞芳, 赵凯. 安丘生姜增施硫肥试验初探[J]. 中国农学通报, 2015, 31(30): 197-200. |
[13] | Romero, A.M., Martínez-Pastor, M., Du, G., et al. (2018) Phosphorylation and Proteasome Recognition of the mRNA-Binding Protein Cth2 Facilitates Yeast Adaptation to Iron Deficiency. Mbio, 9, e01694.
https://doi.org/10.1128/mBio.01694-18 |
[14] | 徐素萍. 微量元素铁与人体健康的关系[J]. 中国食物与营养, 2007(12): 51-54. |
[15] | Senoura, T., Sakashita, E., Kobayashi, T., et al. (2017) The Iron-Chelate Transporter OsYSL9 Plays a Role in Iron Distribution in Developing Rice Grains. Plant Molecular Biology, 95, 375-387.
https://doi.org/10.1007/s11103-017-0656-y |
[16] | Kobayashi, T. (2019) Understanding the Complexity of Iron Sensing and Signaling Cascades in Plants. Plant and Cell Physiology, 60, 1440-1446. https://doi.org/10.1093/pcp/pcz038 |
[17] | Lefèvre, F., Fourmeau, J., Pottier, M., et al. (2018) The Nicotiana tabacum ABC Transporter NtPDR3 Secretes O-Methylated Coumarins in Response to Iron Deficiency. Journal of Experimental Botany, 69, 4419-4431.
https://doi.org/10.1093/jxb/ery221 |
[18] | 陈新. 离子液体光度法测生姜中微量铁[J]. 南京晓庄学院学报, 2015, 31(6): 51-53. |
[19] | 段玲利, 张玉, 李玉梅, 等. 三种植物调味料中铜、铁微量元素的测定[J]. 蔬菜, 2014(6): 9-11. |
[20] | 程虎虎, 马桂秀. 锌、硼、铁微量元素肥料在安丘市生姜上的应用效果探析[J]. 中国农业信息, 2017(21): 68-71. |
[21] | Zhang, Z.H., Zhou, T., Liao, Q., et al. (2018) Integrated Physiologic, Genomic and Tran-scriptomic Strategies Involving the Adaptation of Allotetraploid Rapeseed to Nitrogen Limitation. BMC Plant Biology, 18, 322.
https://doi.org/10.1186/s12870-018-1507-y |
[22] | Cukier, C., Lea, P.J., Ca?as, R., Marmagne, A., et al. (2018) La-beling Maize (Zea mays L.) Leaves with 15 NH4+ and Monitoring Nitrogen Incorporation into Amino Acids by GC/MS Analysis. Current Protocols in Plant Biology, 3, e20073. https://doi.org/10.1002/cppb.20073 |
[23] | 郭衍银, 王秀锋, 徐坤, 等. 根结线虫对生姜大量元素吸收特性的影响[J]. 西北农业学报, 2003, 12(4): 93-97. |
[24] | Zhang, C., Meng, S., Li, M. and Zhao, Z. (2018) Transcriptomic Insight into Nitrogen Uptake and Metabolism of Populus simonii in Response to Drought and Low Nitrogen Stresses. Tree Physiology, 38, 1672-1684.
https://doi.org/10.1093/treephys/tpy085 |
[25] | 吴萍萍, 王家嘉, 李录久. 氮硫配施对生姜生长和氮素吸收的影响[J]. 植物营养与肥料学报, 2015, 21(1): 251-258. |
[26] | 李录久, 刘荣乐, 陈防, 等. 不同氮水平对生姜产量和品质及氮素吸收的影响[J]. 植物营养与肥料学报, 2010, 16(2): 382-388. |
[27] | 徐坤. 氮肥对生姜生长及产量的影响[J]. 中国蔬菜, 1999(6): 17-19. |
[28] | Zhan, L.P., Peng, D.L., Wang, X.L., et al. (2018) Priming Effect of Root-Applied Silicon on the Enhancement of Induced Resistance to the Root-Knot Nematode Meloidogyne Graminicola in Rice. BMC Plant Biology, 18, 50.
https://doi.org/10.1186/s12870-018-1266-9 |
[29] | Geng, A., Wang, X., Wu, L., et al. (2018) Silicon Improves Growth and Alleviates Oxidative Stress in Rice Seedlings (Oryza sativa L. ) by Strengthening Antioxidant Defense and Enhancing Protein Metabolism under Arsanilic Acid Exposure. Ecotoxicology and Environmental Safety, 158, 266-273. https://doi.org/10.1016/j.ecoenv.2018.03.050 |
[30] | Hasanuzzaman, M., Nahar, K., Anee, T.I., et al. (2017) Exoge-nous Silicon Attenuates Cadmium-Induced Oxidative Stress in Brassica napus L. by Modulating AsA-GSH Pathway and Glyoxalase System. Frontiers in Plant Science, 8, 1061. https://doi.org/10.3389/fpls.2017.01061 |
[31] | Zhang, G.Q., Xu, K., Wang, X.C., et al. (2008) Effects of Silicon on Exchange Characteristics of H2O and CO2 in Ginger Leaves. The Journal of Applied Ecology, 19, 1702-1707. |
[32] | 姚红燕, 苏中晓, 李爱科, 等. 增施硅肥对生姜的影响研究[J]. 农业与技术, 2015, 35(4): 101. |
[33] | 朱瑞华, 蒲海涛, 魏艳杰, 等. 硅肥对平度生姜植株生长及产量的影响[J]. 中国农技推广, 2016, 32(11): 52-54. |
[34] | Kaats, G.R., Preuss, H.G., Stohs, S., et al. (2016) A 7-Year Longitudinal Trial of the Safety and Efficacy of a Vitamin/Mineral Enhanced Plant-Sourced Calcium Supplement. The Journal of the American College of Nutrition, 35, 91-99. https://doi.org/10.1080/07315724.2015.1090357 |
[35] | Yang, D.L., Shi, Z., Bao, Y., et al. (2017) Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity. Plant Physiology, 175, 424-437. https://doi.org/10.1104/pp.17.00495 |
[36] | 徐坤, 康立美, 赵德婉. 生姜对钙镁硼锌吸收分配规律的研究[J]. 山东农业科学, 1993(5): 21-23. |
[37] | 党现什, 蒋春姬, 李憬霖, 等. 钙肥对花生产量及生理特性的影响[J]. 沈阳农业大学学报, 2018, 49(6): 717-723 |
[38] | 赵亚飞, 张彩军, 孟谣, 等. 不同施钙量对花生荚果发育时期农艺性状的影响[J]. 花生学报, 2019, 48(1): 27-33+57. |
[39] | 许仙菊, 张永春. 植物耐低磷胁迫的根系适应性机制研究进展[J]. 江苏农业学报, 2018, 34(6): 1425-1429. |
[40] | Oke, M., Ahn, T., Schofield, A. and Paliyath, G. (2005) Effects of Phosphorus Fertilizer Supplementation on Processing Quality and Functional Food Ingredients in Tomato. Journal of Agricultural and Food Chemistry, 53, 1531-1538. https://doi.org/10.1021/jf0402476 |
[41] | Huang, G., Rizwan, M.S., Ren, C., et al. (2018) Influence of Phosphorous Fertilization on Copper Phytoextraction and Antioxidant Defenses in Castor Bean (Ricinus communis L.). Environmental Science and Pollution Research, 25, 115-123. https://doi.org/10.1007/s11356-016-8132-9 |
[42] | 王馨笙, 徐坤, 杨天慧. 生姜对氮、磷、钾吸收分配规律研究[J]. 植物营养与肥料学报, 2010, 16(6): 1515-1520. |
[43] | 陈奇, 杨玉梅, 刘建平, 等. 生姜“3414”肥效试验[J]. 现代农业科技, 2013(1): 75-76. |
[44] | Huang, H., Ouyang, W., Wu, H., et al. (2017) Long-Term Diffuse Phosphorus Pollution Dynamics under the Combined Influence of Land Use and Soil Property Variations. Science of the Total Envi-ronment, 579, 1894-1903.
https://doi.org/10.1016/j.scitotenv.2016.11.198 |
[45] | Jalali, M. and Jalali, M. (2017) Assessment Risk of Phospho-rus Leaching from Calcareous Soils Using Soil Test Phosphorus. Chemosphere, 171, 106-117. https://doi.org/10.1016/j.chemosphere.2016.12.042 |
[46] | Khatun, M.A., Hossain, M.M., Bari, M.A., et al. (2018) Zinc Deficiency Tolerance in Maize Is Associated with the Up-Regulation of Zn Transporter Genes and Antioxidant Ac-tivities. Plant Biology, 20, 765-770.
https://doi.org/10.1111/plb.12837 |
[47] | Zhang, J., Wang, S., Song, S., et al. (2019) Transcriptomic and Proteomic Analyses Reveal New Insight into Chlorophyll Synthesis and Chloroplast Structure of Maize Leaves under Zinc Defi-ciency Stress. Journal of Proteomics, 199, 123-134. https://doi.org/10.1016/j.jprot.2019.03.001 |
[48] | 张莹. 锌污染对土壤和植物的影响[J]. 度假旅游, 2018(8): 86-87. |
[49] | Zhao, A.Q., Tian, X.H., Cao, Y.X., et al. (2014) Compari-son of Soil and Foliar Zinc Application for Enhancing Grain Zinc Content of Wheat When Grown on Potentially Zinc-Deficient Calcareous Soils. Journal of the Science of Food and Agriculture, 94, 2016-2022. https://doi.org/10.1002/jsfa.6518 |
[50] | Iqbal, M.N., Rasheed, R., Ashraf, M.Y., et al. (2018) Exogenously Applied Zinc and Copper Mitigate Salinity Effect in Maize (Zea mays L.) by Improving Key Physiological and Biochemical At-tributes. Environmental Science and Pollution Research, 25, 23883-23896. https://doi.org/10.1007/s11356-018-2383-6 |
[51] | Wang, X., Hao, L., Zhu, B. and Jiang, Z. (2018) Plant Calcium Signaling in Response to Potassium Deficiency. International Journal of Molecular Sciences, 19, 3456. https://doi.org/10.3390/ijms19113456 |
[52] | Lu, Z., Xie, K., Pan, Y., et al. (2019) Potassium Mediates Coordination of Leaf Photosynthesis and Hydraulic Conductance by Modifications of Leaf Anatomy. Plant, Cell & Environment, 42, 2231-2244.
https://doi.org/10.1111/pce.13553 |
[53] | Tian, G., Wang, F., Peng, L., et al. (2017) Effects of Different Potassium Levels on Growth and NO3-Uptake and Utilization of Malus hupehensis Seedlings. The Journal of Applied Ecology, 28, 2254-2260. |
[54] | Liang, T.B., Wang, Z.L., Wang, R.J., et al. (2007) Effects of Potassium Humate on Ginger Root Growth and Its Active Oxygen Metabolism. The Journal of Applied Ecology, 18, 813-817. |
[55] | Rachkeeree, A., Kan-tadoung, K., Suksathan, R., et al. (2018) Nutritional Compositions and Phytochemical Properties of the Edible Flowers from Selected Zingiberaceae Found in Thailand. Frontiers in Nutrition, 5, 3.
https://doi.org/10.3389/fnut.2018.00003 |
[56] | 李富兰, 斯维, 周雪松, 等. 生姜中钾的提取工艺研究[J]. 中国调味品, 2017, 42(3): 91-93. |
[57] | 穆洪海, 臧丽青, 于继娥, 等. 五莲县山区生姜钾素梯度试验研究[J]. 中国果菜, 2012(3): 26-27. |
[58] | Volkotrub, L.P. and Andropova, T.V. (2004) Role of Selenium in the Etiology and Prevention of Diseases (Review). Gigiena i Sanitariia, 3, 57-61. |
[59] | Chen, L., Yang, F., Xu, J., et al. (2002) Determination of Sele-nium Concentration of Rice in China and Effect of Fertilization of Selenite and Selenate on Selenium Content of Rice. Journal of Agricultural and Food Chemistry, 50, 5128-5130. https://doi.org/10.1021/jf0201374 |
[60] | Ip, C. and Lisk, D.J. (2004) Bioavailability of Selenium from Selenium-Enriched Garlic. Nutrition and Cancer, 20, 129-137. https://doi.org/10.1080/01635589309514279 |
[61] | Yan, L. and Johnson, L.K. (2011) Selenium Bioavailability from Naturally Produced High-Selenium Peas and Oats in Selenium-Deficient Rats. Journal of Agricultural and Food Chem-istry, 59, 6305-6311.
https://doi.org/10.1021/jf201053s |
[62] | Wadgaonkar, S.L., Nancharaiah, Y.V., Esposito, G., et al. (2018) Environ-mental Impact and Bioremediation of Seleniferous Soils and Sediments. Critical Reviews in Biotechnology, 38, 941-956.
https://doi.org/10.1080/07388551.2017.1420623 |
[63] | 吕臣浩, 邓小芳, 陈友恩, 等. 生姜硒营养特性研究[J]. 中国土壤与肥料, 2019, 279(1): 117-121. |
[64] | Hajiboland, R., Bahrami-Rad, S. and Bastani, S. (2013) Phenolics Me-tabolism in Boron-Deficient Tea [Camellia sinensis (L.) O. Kuntze] Plants. Acta Biologica Hungarica, 64, 196-206. https://doi.org/10.1556/ABiol.64.2013.2.6 |
[65] | Chatterjee, M., Liu, Q., Menello, C., et al. (2017) The Combined Action of Duplicated Boron Transporters Is Required for Maize Growth in Boron-Deficient Conditions. Genetics, 206, 2041-2051.
https://doi.org/10.1534/genetics.116.198275 |
[66] | Hanaoka, H., Uraguchi, S., Takano, J., et al. (2014) OsNIP3;1, a Rice Boric Acid Channel, Regulates Boron Distribution and Is Essential for Growth under Boron-Deficient Conditions. The Plant Journal, 78, 890-902.
https://doi.org/10.1111/tpj.12511 |
[67] | Wang, Q., Lu, L., Wu, X., et al. (2004) Boron Influences Pollen Germina-tion and Pollen Tube Growth in Picea meyeri. Tree Physiology, 23, 345-351. https://doi.org/10.1093/treephys/23.5.345 |
[68] | Lukaszewski, K.M. and Blevins, D.G. (1996) Root Growth Inhibi-tion in Boron-Deficient or Aluminum-Stressed Squash May Be a Result of Impaired Ascorbate Metabolism. Plant Physi-ology, 112, 1135-1140.
https://doi.org/10.1104/pp.112.3.1135 |
[69] | Camacho-Cristobal, J.J. and Gonzalez-Fontes, A. (1999) Boron Defi-ciency Causes a Drastic Decrease in Nitrate Content and Nitrate Reductase Activity, and Increases the Content of Carbo-hydrates in Leaves from Tobacco Plants. Planta, 209, 528-536. https://doi.org/10.1007/s004250050757 |
[70] | 张乃国, 杨贵华, 李春梅, 等. 硼、锌对莱芜大姜生长发育及产量的影响[J]. 农业科技通讯, 2006(1): 44-45. |