全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2019 

基于RFMF模型和K-Means方法的公募基金用户精细化营销
Meticulous Marketing of Mutual Fund Customers Based on RFMF Model and K-Means Method

DOI: 10.12677/FIN.2019.96070, PP. 634-640

Keywords: RFM模型,用户聚类,基金精细化营销
RFM Model
, Customer Clustering, Meticulous Fund Marketing

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着互联网技术的飞速发展,互联网渠道已经成为了公募基金公司重点耕耘的销售渠道。精细化的营销对于降低营销成本,提高运营效率至关重要。面对随着互联网成长起来的具有巨大理财潜力的用户,如何对其进行有效区分,并针对不同类型人群实施精细化的营销策略,是当前公募基金公司急需解决的问题。本文提出了改进的RFM模型,从近度、频度、管理费三个维度对用户价值进行衡量,并通过K-Means算法对用户进行聚类,从而实现用户分群。并使用了某基金公司的某产品的申赎历史数据对模型进行了验证,得到了5个聚类结果,并针对5个聚类中用户的特点,提出了具有针对性的营销策略。
With the rapid development of Internet technology, Internet channels have become the key sales channels for mutual fund companies. Meticulous marketing is critical to reduce costs and improve operational efficiency. Facing customers with huge financial potential growing up with the Internet, how to effectively distinguish them and implement meticulous marketing strategies for different types of customers is an urgent problem for the companies. This paper proposed an improved RFM model, which measures customer value from three dimensions of recency, frequency and management fee, and grouped users through K-Means algorithm. The model was verified by using the historical data of a certain fund company’s product, and five clusters were obtained. Based on the characteristics of users in the five clusters, targeted marketing strategies were proposed.


References

[1]  裴蕾. 新形势下我国开放式基金营销策略研究[J]. 内蒙古科技与经济, 2017(7): 25.
[2]  邹定斌,宁娇丽. 我国证券投资基金营销现状与市场精细化营销对策[J]. 湖南科技大学学报(社会科学版), 2005, 8(1): 86-89.
[3]  Cohen, M.D. (2004) Exploiting Response Models—Optimizing Cross-Sell and Up-Sell Opportunities in Banking. Information Systems, 29, 327-341.
https://doi.org/10.1016/j.is.2003.08.001
[4]  Miglautsch, J. (2000) Thoughts on RFM Scoring. The Journal of Database Marketing, 8, 35-43.
https://doi.org/10.1055/s-2000-11239
[5]  和金生, 赵焕臣, 杜秀珍. 用层次分析法探讨科研成果的综合评价[J]. 系统工程理论与实践, 1985(1): 33-38.
[6]  Macqueen, J. (1965) Some Methods for Classification and Analysis of Mul-ti-Variate Observations. Proceedings of Berkeley Symposium on Mathematical Statistics & Probability, Berkeley, June 21-July 18, 1965, 281-297.
[7]  Steinhaus, H. (1956) Sur la division des corpmaterielsen parties. Bulletin L’Académie Polonaise des Science, 1, 801.
[8]  Lloyd, S.P. (1957) Least Square Quantization in PCM. Bell Telephone Laboratories Paper. Published in Journal Much Later: Lloyd, SP (1982) Least Squares Quantization in PCM. IEEE Transactions on Information Theory, 28, 129-137.
[9]  李永森, 杨善林, 马溪骏, 等. 空间聚类算法中的K值优化问题研究[J]. 系统仿真学报, 2006, 18(3): 573-576.
[10]  王千, 王成, 冯振元, 叶金凤. K-Means聚类算法研究综述[J]. 电子设计工程, 2012, 20(7): 21-24.
[11]  Calinski, T. and Harabasz, J. (1974) A Dendrite Method for Cluster Analysis. Communications in Statistics, 3, 1-27.
https://doi.org/10.1080/03610927408827101

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133