全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

克氏原螯虾TUSC3基因的鉴定与免疫功能分析
Characterization and Immunological Function of Tumor Suppressor Candidate 3 (TUSC3) in Crayfish Procambarus clarkii

DOI: 10.12677/OJFR.2019.64020, PP. 149-155

Keywords: 克氏原螯虾,TUSC3,LPS,Poly I:C
Procambarus clarkii
, TUSC3, LPS, Poly I:C

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探究TUSC3 (Tumor suppressor candidate 3)基因在克氏原螯虾中的生物学功能,本研究利用PCR法克隆获得了该基因序列,并采用实时荧光定量PCR技术分析了该基因在克氏原鳌虾不同组织中的表达特征以及免疫诱导物(LPS和Poly I:C)对肠、腮和血淋巴细胞中TUSC3基因表达水平的影响。结果表明TUSC3基因编码326个氨基酸,预测蛋白与南美白对虾的TUSC3蛋白同源性较高(93.25%),包含一个保守的OST3/OST6同源功能区。PCR检测结果显示该基因在被检各组织中均有表达,且在血细胞组织中表达量最高,心脏组织中最低。LPS和Poly I:C刺激后,TUSC3基因的表达量总体表现为上升趋势,但不同组织及不同诱导物之间存在差异。这些结果表明TUSC3基因在克氏原螯虾的免疫反应过程中具有一定功能。
In order to explore the biological function of tumor suppressor candidate 3 in Procambarus clarkii, a TUSC3 gene was cloned using PCR and real-time fluorescent quantitative PCR method was used to detect the expression patterns of TUSC3 in various tissues of P. clarkii as well as the effect of immune inducer LPS and Poly I:C on the TUSC3 expression level in gut, gill and hemocytes. This gene encoded 326 amino acids with a conserved OST3/OST6 domain and the predicted protein was highly homologous to that in Penaeus vannamei (93.25%). PCR test results show TUSC3 was extensively expressed in all examined tissues with the highest expression level in hemocytes and lowest in heart. The expression level of TUSC3 was significantly increased after lipopolysaccharide (LPS) or polyinosinic-polycytidylic acid (poly I:C) induction. However, the expression patterns of TUSC3 differed in various tissues. These results suggested that TUSC3 played a role in immune response in P. clarkii.

References

[1]  佘磊. 小龙虾的生物学特性及其主要养殖模式[J]. 湖北农业科学, 2018, 57(17): 75-78.
[2]  ?ukasz, W., Janikowski, T., Bodzek, P., Anita, O. and Urszula, M. (2016) Expression of Tumor Suppressor Genes Related to the Cell Cycle in Endometrial Cancer Patients. Advances in Medical Sciences, 61, 317-324.
https://doi.org/10.1016/j.advms.2016.04.001
[3]  Va?í?ková, K., Horak, P. and Vaňhara, P. (2018) TUSC3: Functional Duality of a Cancer Gene. Cellular and Molecular Life Sciences, 75, 849-857.
https://doi.org/10.1007/s00018-017-2660-4
[4]  Garshasbi, M., Kahrizi, K., Hosseini, M., Nouri Vahid, L., Falah, M., Hemmati, S., Hu, H., Tzschach, A., Ropers, H.H., Najmabadi, H. and Kuss, A.W. (2011) Clinical Report a Novel Nonsense Mutation in TUSC3 Is Responsible for Non-Syndromic Autosomal Recessive Mental Retardation in a Consanguineous Iranian Family. American Journal of Medical Genetics, 155, 1976-1980.
https://doi.org/10.1002/ajmg.a.34077
[5]  Mohorko, E., Owen, R.L., Maloj?i?, G., Brozzo, M.S., Aebi, M. and Glock-shuber, R. (2014) Structural Basis of Substrate Specificity of Human Oligosaccharyl Transferase Subunit N33/Tusc3 and Its Role in Regulating Protein N-Glycosylation. Structure, 22, 590-601.
https://doi.org/10.1016/j.str.2014.02.013
[6]  Horak, P., Tomasich, E., Vaňhara, P., Kratochvílová, K., Anees, M., Marhold, M., Lemberger, C.E., Gerschpacher, M., Horvat, R., Sibilia, M., Pils, D. and Krainer, M. (2014) TUSC3 Loss Alters the ER Stress Response and Accelerates Prostate Cancer Growth in Vivo. Scientific Reports, 4, Article No. 3739.
https://doi.org/10.1038/srep03739
[7]  Cherepanova, N.A., Shrimal, S. and Gilmore, R. (2014) Oxidoreductase Activity Is Necessary for N-Glycosylation of Cysteine-Proximal Acceptor Sites in Glycoproteins. The Journal of Cell Biology, 206, 525-539.
https://doi.org/10.1083/jcb.201404083
[8]  Lauc, G., Huffman, J.E., Pucic, M., et al. (2013) Loci Associated with N-Glycosylation of Human Immunoglobulin G Show Pleiotropy with Autoimmune Diseases and Haematological Cancers. PLOS Genetics, 9, e1003225.
[9]  Zhu, B.J., Tang, L., Yu, Y.Y., Yu, H.M., Wang, L., Qian, C., Wei, G.Q. and Liu, C.L. (2017) Identification of Ecdysteroid Receptor-Mediated Signaling Pathways in the Hepatopancreas of the Red Swamp Crayfish, Procambarus clarkii. General and Comparative Endocrinology, 246, 372-381.
https://doi.org/10.1016/j.ygcen.2017.01.013
[10]  Sun, Y.X., Tang, L., Gao, J., Feng, Y.Y., Peng, T., Yu, Y.Y., Yang, L.L., Sun, Y. and Zhu, B.J. (2017) A Role of Tumor Susceptibility Gene 101 (TSG101) in Innate Immune Response of Crayfish Procambarus clarkii. Developmental & Comparative Immunology, 76, 268-273.
https://doi.org/10.1016/j.dci.2017.06.016
[11]  Feng, Y.Y., Ma, M.L., Zhang, X.J., Liu, D., Wang, L., Qian, C., Wei, G.Q. and Zhu, B.J. (2019) Characterization of Small GTPase Rac1 and Its Interaction with PAK1 in Crayfish Procambarus clarkii. Fish and Shellfish Immunology, 87, 178-183.
https://doi.org/10.1016/j.fsi.2019.01.013
[12]  Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Research, 25, 4876-4882.
https://doi.org/10.1093/nar/25.24.4876
[13]  Livak, K.J. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-408.
https://doi.org/10.1006/meth.2001.1262
[14]  Reimer, T., Brcic, M., Schweizer, M. and Jungi, T.W. (2008) Poly (I:C) and LPS Induce Distinct IRF3 and NF-Kappa B Signaling during Type-I IFN and TNF Responses in Human Macrophages. Journal of Leukocyte Biology, 83, 1249.
https://doi.org/10.1189/jlb.0607412

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133