全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

氨水混合工质热物理性质计算现状及展望
Present Status and Prospect of Thermophysical Properties Calculation of Ammonia-Water Mixture Used as Working Fluid

DOI: 10.12677/SE.2019.95007, PP. 53-60

Keywords: 氨水,混合工质,状态方程,Refprop,现状,展望
Ammonia-Water
, Mixture, Equation of State, Refprop, Present Status, Prospect

Full-Text   Cite this paper   Add to My Lib

Abstract:

现今氨水混合工质被广泛的应用于吸收式制冷及中低品位热能利用领域。而氨水混合工质在以上两个应用领域中所对应的工况范围有较大差别,因此对其热物理性质的探讨研究具有十分重要的意义。本文简要综述了氨水混合工质热物理性质计算的整体研究现状,并分析了状态方程法及国际权威工质物性计算软件Refprop用于计算氨水混合工质热物理性质时各自的特点,在此基础上给出了研究展望。
Nowadays, ammonia-water mixture is widely used in absorption refrigeration and low-grade heat energy utilization. The working conditions of ammonia-water mixture in the above two application fields are quite different, so it is of great significance to study its thermophysical properties. This paper briefly reviews the overall research status of the calculation of thermophysical properties of ammonia-water mixture, and analyses the respective characteristics of the equation of state method and Refprop, an international authoritative software for calculating the thermophysical properties of ammonia-water mixture. On this basis, the research prospects are given.

References

[1]  Micak, H.A. (1996) An Introduction to the Kalina Cycle. Proceedings of the International Joint Power Generation Conference, Houston, TX.
[2]  Nag, P.K. and Gupta, A.V.S.S.K.S. (1998) Exergy Analysis of the Kalina Cycle. Applied Thermal Engineering, 18, 427-439.
https://doi.org/10.1016/S1359-4311(97)00047-1
[3]  Enick, R.M., Donahey, G.P. and Holsinger, M. (1998) Modeling the High-Pressure Ammonia-Water System with WATAM and the Peng-Robinson Equation of State for Kalina Cycle Studies. Industrial & Engineering Chemistry Research, 37, 1644-1650.
https://doi.org/10.1021/ie970638s
[4]  Peng, D.Y. and Robinson, D.B. (1980) Two- and Three-Phase Equilibrium Calculations for Coal Gasification and Related Processes. In: Thermodynamics of Aqueous Systems with Industrial Applications, American Chemical Society, Washington DC, 393-414.
https://doi.org/10.1021/bk-1980-0133.ch020
[5]  Skogestad, S. (1983) Experience in Norsk Hydro with Cubic Equations of State. Fluid Phase Equilibria, 13, 179-188.
https://doi.org/10.1016/0378-3812(83)80092-2
[6]  Renon, H., Guillevic, J.L., Richon, D., Boston, J. and Britt, H. (1986) A Cubic Equation of State Representation of Ammonia—Water Vapour—Liquid Equilibrium Data. International Journal of Refrigeration, 9, 70-73.
https://doi.org/10.1016/0140-7007(86)90035-6
[7]  Iseli, M. (1985) Experimentelle und Thermodynamische Untersuchung des Siedegleichgewichtes des Systems NH3-H2O. Eidgen?ssischen Technischen Hochschule, Zürich.
[8]  Stryjek, R. and Vera, J.H. (1986) PRSV—An Improved Peng-Robinson Equation of State with New Mixing Rules for Strongly Nonideal Mixtures. The Canadian Journal of Chemical Engineering, 64, 334-340.
https://doi.org/10.1002/cjce.5450640225
[9]  Sturnfield, E.A. and Matherne, J.L. (1988) Modeling of a Complex, Polar System with a Modified Soave-Redlich- Kwong Equation.
[10]  Huang, H. (1990) A New Mixing Rule for the Patel-Teja Equation of State. Study of Vapor-Liquid Equilibria. Fluid Phase Equilibria, 58, 93-115.
https://doi.org/10.1016/0378-3812(90)87007-C
[11]  Smolen, T.M., Manley, D.B. and Poling, B.E. (1991) Vapor-Liquid Equilibrium Data for the Ammonia-Water System and Its Description with a Modified Cubic Equation of State. Journal of Chemical & Engineering Data, 36, 202-208.
https://doi.org/10.1021/je00002a017
[12]  Moshfeghian, M., Shariat, A. and Maddox, R.N. (1992) Prediction of Refrigerant Thermodynamic Properties by Equations of State: Vapor Liquid Equilibrium Behavior of Binary Mixtures. Fluid Phase Equilibria, 80, 33-44.
https://doi.org/10.1016/0378-3812(92)87053-P
[13]  Peters, R. and Keller, J.U. (1993) Ein Assoziationsmodell zur Berechnung von Phasengleich-gewichtszust?nden im Stoffsystem Ammoniak-Wasser. DKVTagungsber, 2, 183-196.
[14]  Zhao, E., Sugie, H. and Lu, B.C.Y. (1994) Calculation of Vapor-Liquid Equilibria and Saturated Liquid Volumes for Water-Ammonia Mixtures. Chemical Engineering Communications, 129, 99-108.
https://doi.org/10.1080/00986449408936253
[15]  Vidal, J. (1983) Equations of State-Reworking the Old Forms. Fluid Phase Equilibria, 13, 15-33.
https://doi.org/10.1016/0378-3812(83)80080-6
[16]  Gillespie, P.C., Wilding, W.V. and Wilson, G.M. (1987) Vapor-Liquid Equilibrium Measurements on the Ammonia-Water System from 313 K to 589 K. AICHE Symposium Series, 83, 97-127.
[17]  Thomsen, K. and Rasmussen, P. (1999) Thermodynamic Model for the Ammonia-Water System. Proceeding of 13th International Conference on the Properties of Water and Steam, Toronto, Canada.
[18]  Duan, Z., M?ller, N. and Weare, J. (1996) Equation of State for the NH3-H2O System. Journal of Solution Chemistry, 25, 43-50.
https://doi.org/10.1007/BF00972757
[19]  Harms-Watzenberg, F., Mes, S. and Korrelation, D. (1995) Thermodynamischen Eigensc haften von Wasser-Ammo- niak-Gemischen. VDI Fortschritt-Berichte, Series 3: Verfahrenstechnik, No. 380, VDI-Verlag.
[20]  Schulz, S.C.G. (1973) Equations of State for the System Ammonia-Water for Use with Computers. Proceedings of the 13th International Congress of Refrigeration, 431-436.
[21]  Rizvi, S.S.H. (1985) Measurement and Correlation of Ammonia-Water Equilibrium Data. University of Calgary, Calgary, Canada.
[22]  Tochigi, K., Kurihara, K., Satou, T. and Kojima, K. (1998) Prediction of Phase Equilibria for the Systems Containing Ammonia Using PRASOG. The Journal of Supercritical Fluids, 13, 61-67.
https://doi.org/10.1016/S0896-8446(98)00036-9
[23]  Edwards, T.J., Newman, J. and Prausnitz, J.M. (1978) Thermodynamics of Vapor-Liquid Equilibria for the Ammonia-Water System. Industrial & Engineering Chemistry Fundamentals, 17, 264-269.
https://doi.org/10.1021/i160068a007
[24]  Kouremenos, D.A. and Rogdakis, E.D. (1990) The Temperature-Entropy (or Enthalpy) and the Enthalpy-Entropy (Mollier) Diagram of the Kalina Cycle. Fundamentals of Thermodynamics and Exergy Analysis, 19, 13-19.
[25]  Ziegler, B. and Trepp, C. (1984) Equation of State for Ammonia-Water Mixtures. International Journal of Refrigeration, 7, 101-106.
https://doi.org/10.1016/0140-7007(84)90022-7
[26]  Ibrahim, O.M. and Klein, S.A. (1993) Thermodynamic Properties of Ammonia-Water Mixtures. ASHRAE Transactions Symposia, 21, 1495-1502.
[27]  Xu, F. and Goswami, D.Y. (1999) Thermodynamic Properties of Ammonia-Water Mixtures for Power-Cycle Applications. Energy, 24, 525-536.
https://doi.org/10.1016/S0360-5442(99)00007-9
[28]  Stecco, S.S. and Desideri, U. (1989) Thermodynamic Analysis of the Kalina Cycles: Comparisons, Problems, Perspectives. ASME Paper, American Society of Mechanical Engineers GT, Paper No. 89-GT-149.
https://doi.org/10.1115/89-GT-149
[29]  El-Sayed, Y. and Tribus, M. (1985) Thermodynamic Properties of Wa-ter-Ammonia Mixtures Theoretical Implementation for Use in Power Cycles Analysis. ASME Paper AES, American Society of Mechanical Engineers, 1, 89-95.
[30]  Rukes, B. and Dooley, R.B. (2001) Guideline on the IAPWS Formu-lation 2001 for the Thermodynamic Properties of Ammonia-Water Mixtures. IAPWS (The International Association for the Properties of Water and Steam), MD.
[31]  Jordan, D.P. (1997) Aqua-Ammonia Properties. Texas Tech University, Lubbock, TX.
[32]  Barhoumi, M., Snoussi, A., Ben, E.N., Mejbri, K. and Bellagi, A. (2004) Modélisation des données thermodynamiques du mélange ammoniac/eau. International Journal of Refrigeration, 27, 271-283.
https://doi.org/10.1016/j.ijrefrig.2003.09.005
[33]  Mejbri, K. and Bellagi, A. (2006) Modelling of the Thermo-dynamic Properties of the Water-Ammonia Mixture by Three Different Approaches. International Journal of Refriger-ation, 29, 211-218.
https://doi.org/10.1016/j.ijrefrig.2005.06.002
[34]  Amer, H.T., Michel, F. and Oliver, L. (2003) Thermodynamic Properties of Ammonia-Water Mixtures. International Congress of Refrigeration, WA.
[35]  Kalina, A., Tribus, M. and El-Sayed, Y. (1986) A Theoretical Approach to the Thermophysical Properties of Two-Miscible-Component Mixtures For the Purpose of Power-Cycle Analysis. ASME Paper, 86, 54.
[36]  Weber, L.A. (1999) Estimating the Virial Coef-ficients of the Ammonia + Water Mixture. Fluid Phase Equilibria, 162, 31-49.
https://doi.org/10.1016/S0378-3812(99)00181-8
[37]  Park, Y.M. (1988) A Generalized Equation of State Ap-proach to the Thermodynamic Properties of Ammonia-Water Mixtures with Applications. University of Michigan, Ann Arbor, MI.
[38]  Ikegami, Y., Nishida, T., Uto, M., et al. (1992) Thermophysical Properties of Ammonia/Water by the BWR Equation of State. Proceeding of The Thirteenth Japan Symposium on Thermophysical Properties, 213-216.
[39]  Friend, D.G., Olson, A.L. and Nowarski, A. (1994) Standard Thermophysical Properties of the Ammo-nia-Water Binary Fluid. Proceedings of the 12th International Conference on the Properties of Water and Steam, Or-lando, FL.
[40]  Nowarski, A. and Friend, D.G. (1998) Application of the Extended Corresponding States Method to the Calculation of the Ammonia-Water Mixture Thermodynamic Surface. International Journal of Thermophysics, 19, 1133-1142.
https://doi.org/10.1023/A:1022641709904
[41]  Abovsky, V. (1996) Thermodynamics of Ammonia Water Mixture. Fluid Phase Equilibria, 116, 170-176.
https://doi.org/10.1016/0378-3812(95)02884-6
[42]  Enick, R.M., Mcllvried, H.G., Gale, T.K., et al. (1997) The Modeling of LEBS Kalina Power Cycles. Proceedings of Joint Power Generation Conference, ASME, New York, 55-67.
[43]  Rainwater, J.C. and Tillner-Roth, R. (1999) Critical Region Vapor-Liquid Equilibrium Model of Ammo-nia-Water. 13th International Conference on the Properties of Water and Steam, Toronto, Canada.
[44]  Tillner-Roth, R. and Friend, D.G. (1998) A Helmholtz Free Energy Formulation of the Thermodynamic Properties of the Mixture {Water + Ammonia}. Journal of Physical and Chemical Reference Data, 27, 63-96.
https://doi.org/10.1063/1.556015
[45]  Pátek, J. and Klomfar, J. (1995) Simple Functions for Fast Calculations of Selected Thermodynamic Properties of the Ammonia-Water System. International Journal of Refrigeration, 18, 228-234.
https://doi.org/10.1016/0140-7007(95)00006-W
[46]  Jain, P.C. and Gable, G.K. (1971) Equilibrium Property Data Equations for Aqua-Ammonia Mixtures. ASHRAE Transactions, 77, 149-151.
[47]  Mirolli, M. (2001) Commer-cialization of the Kalina Cycle for Power Generation and Its Potential Impact on CO2 Emissions. Exergy Inc., Hayward, CA.
[48]  陈世玉, 陈亚平, 华君叶, 吴嘉峰. 基于PR 方程的氨水泡点参数计算软件编制[C]//第七届全国制冷空调新技术研讨会. 第七届全国制冷空调新技术研讨会论文集. 2012: 1-5.
[49]  沈卫凯, 徐明海. Gibbs和Helmholtz函数法计算氨水热力性质对比[J]. 化工进展, 2011(S1): 618-621.
[50]  Lemmon, E.W., McLinden, M.O. and Huber, M.L. (2002) NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP Version7.0. National Institute of Standard Technology, Boulder, CO.
[51]  Thorin, E. (2000) Power Cycles with Ammonia-Water Mixtures as Working Fluid Analysis of Different Applications and the Influence of Thermophysical Properties. Royal Institute of Technology, Stockholm, Sweden.
[52]  Thorin, E., Dejfors, C. and Svedberg, G. (1998) Thermodynamic Properties of Ammonia-Water Mixtures for Power Cycles. International Journal of Thermophysics, 19, 501-510.
https://doi.org/10.1023/A:1022525813769
[53]  Thorin, E. (2000) Comparison of Correlations for Predicting Thermodynamic Properties of Ammonia-Water Mixtures. International Journal of Thermophysics, 21, 853-870.
https://doi.org/10.1023/A:1006658107014

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133