|
Applied Physics 2019
局域表面等离激元场时空演化的相干控制
|
Abstract:
[1] | Jiang, N.-N., Zhuo, X.-L. and Wang, J.-F. (2018) Active Plasmonics: Principles, Structures, and Applications. Chemical Reviews, 118, 3054-3099. https://doi.org/10.1021/acs.chemrev.7b00252 |
[2] | Joly, A.G., El-Khoury, P.Z. and Hess, W.P. (2018) Spatiotemporal Imaging of Surface Plasmons Using Two-Color Photoemission Electron Microscopy. The Journal of Physical Chemistry C, 122, 20981-20988.
https://doi.org/10.1021/acs.jpcc.8b05849 |
[3] | Joly, A.G., Gong, Y., El-Khoury, P.Z. and Hess, W.P. (2018) Surface Plasmon-Based Pulse Splitter and Polarization Multiplexer. The Journal of Physical Chemistry Letters, 9, 6164-6168. https://doi.org/10.1021/acs.jpclett.8b02643 |
[4] | Kim, S., Jin, J., Kim, Y.J., et al. (2008) High-Harmonic Generation by Resonant Plasmon Field Enhancement. Nature, 453, 757-760. https://doi.org/10.1038/nature07012 |
[5] | Abb, M., Wang, Y.-D., De Groot, C.H. and Muskens, O.L. (2014) Hotspot-Mediated Ultrafast Nonlinear Control of Multifrequency Plasmonic Nanoantennas. Nature Communications, 5, 4869. https://doi.org/10.1038/ncomms5869 |
[6] | Dombi, P., Ho?rl, A., Ra?cz, P., et al. (2013) Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles. Nano Letters, 13, 674-678. https://doi.org/10.1021/nl304365e |
[7] | Wagner, M., Fei, Z., McLeod, A.S., et al. (2014) Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump-Probe Nanoscopy. Nano Letters, 14, 894-900. https://doi.org/10.1021/nl4042577 |
[8] | Fang, X., Lun, T.M., Ou, J.-Y., et al. (2014) Ultrafast All-Optical Switching via Coherent Modulation of Metamaterial Absorption. Applied Physics Letters, 104, Article ID: 141102. https://doi.org/10.1063/1.4870635 |
[9] | Zhou, F., Li, Z.-Y., Liu, Y. and Xia, Y.N. (2008) Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles. The Journal of Physical Chemistry C, 112, 20233-20240.
https://doi.org/10.1021/jp807075f |
[10] | Hrelescu, C., Sau, T.K., Rogach, A.L., et al. (2011) Selective Excitation of Individual Plasmonic Hotspots at the Tips of Single Gold Nanostars. Nano Letters, 11, 402-407. https://doi.org/10.1021/nl103007m |
[11] | Awada, C., Popescu, T., Douillard, L., et al. (2012) Selective Excitation of Plasmon Resonances of Single Au Triangles by Polarization-Dependent Light Excitation. The Journal of Physical Chemistry C, 116, 14591-14598.
https://doi.org/10.1021/jp303475c |
[12] | Koya, A.N., Ji, B.-Y., Hao, Z.-Q. and Lin, J.Q. (2017) Coherent Control of Gap Plasmons of a Complex Nanosystem by Shaping Driving Femtosecond Pulses. Plasmonics, 12, 1693-1699. https://doi.org/10.1007/s11468-016-0435-7 |
[13] | Bahar, E., Arieli, U. and Suchowski, H. (2019) Coherent Control of the Non-Instantaneous Response of Plasmonic Nanostructes. Applications and Technology, Optical Society of America, CLEO, JTu3M. 3.
https://doi.org/10.1364/CLEO_AT.2019.JTu3M.3 |
[14] | Song, X.-W., Ji, B.-Y., Lang, P., et al. (2018) Subwavelength Imaging and Control of Ultrafast Optical Near Field in Nanosized Bowtie and Ring. Proceedings of Ultrafast Phenomena and Nanophotonics, 22th International Society for Optics and Photonics, 10530, Article ID: 1053018. |
[15] | Ichiji, N., Otake, Y. and Kubo, A. (2019) Spectral and Temporal Modulations of Femtosecond SPP Wave Packets Induced by Resonant Transmission/Reflection Interactions with Metal-Insulator-Metal Nanocavities. arXiv Preprint arXiv:1904.11750. https://doi.org/10.1364/OE.27.022582 |
[16] | Triolo, C., Savasta, S., Settineri, A., et al. (2019) Near-Field Imaging of Surface-Plasmon Vortex-Modes around a Single Elliptical Nanohole in a Gold Film. Scientific Reports, 9, 5320. https://doi.org/10.1038/s41598-019-41781-2 |
[17] | Stockman, M.I., Faleev, S.V. and Bergman, D.J. (2002) Coherent Control of Femtosecond Energy Localization in Nanosystems. Physical Review Letters, 88, Article ID: 067402. https://doi.org/10.1103/PhysRevLett.88.067402 |
[18] | Lee, T.W. and Gray, S.K. (2005) Controlled Spatiotemporal Excitation of Metal Nanoparticles with Picosecond Optical Pulses. Physical Review B, 71, Article ID: 035423. https://doi.org/10.1103/PhysRevB.71.035423 |
[19] | Harada, T., Matsuishi, K., Oishi, Y., et al. (2011) Temporal Control of Local Plasmon Distribution on Au Nanocrosses by Ultra-Broadband Femtosecond Laser Pulses and Its Application for Selective Two-Photon Excitation of Multiple Fluorophores. Optics Express, 19, 13618-13627. https://doi.org/10.1364/OE.19.013618 |
[20] | Manuilovich, E.S., Astapenko, V.A. and Golovinskii, P.A. (2016) Superfocusing of an Ultrashort Plasmon Pulse by a Conducting Cone. Quantum Electronics, 46, 50. https://doi.org/10.1070/QE2016v046n01ABEH015910 |
[21] | FDTD Solutions. http://www.lumerical.com |
[22] | 李志远, 李家方. 金属纳米结构表面等离子体共振的调控和利用[J]. 科学通报, 2011, 56(32): 2631-2661. |
[23] | 张志刚. 飞秒激光技术[M]. 北京: 科学出版社, 2011. |