全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

局域表面等离激元场时空演化的相干控制
Coherent Control of Spatiotemporal Evolution of the Localized Surface Plasmon Field

DOI: 10.12677/APP.2019.911054, PP. 442-448

Keywords: 局域等离激元,啁啾脉冲,时空演化,相干控制,时域有限差分
Localized Surface Plasmon
, Chirped Pulse, Spatiotemporal Evolution, Coherent Control, Finite Difference Time Domain

Full-Text   Cite this paper   Add to My Lib

Abstract:

等离激元具有独特的物理特性,在许多研究领域得到了重要应用。目前,在微观尺度下等离激元与物质作用动力学演化的相干控制,正广受关注。本文分别模拟了入射光为单色连续光、正啁啾脉冲与负啁啾脉冲时,非对称金纳米十字结构的光学响应。发现当采用单色连续光照射时,纳米结构中热点的空间位置具有很好的稳定性,正啁啾脉冲时能够激发产生两种共振模式,并对等离激元场在不同结构位置的时间演化规律进行了分析。当采用负啁啾脉冲时,两种共振模式的激发顺序相反,实现了对等离激元时空演化的有效调控。该研究对于等离激元纳米器件设计和优化具有重要意义。
Surface plasmons have been used in many research fields for the unique physical properties. At present, coherent control of dynamical evolution of surface plasmons and matter on the micro scale is widely concerned. In this paper, the optical response of asymmetric gold cross nanostructure is simulated when the incident light is monochromatic continuous light, positive chirped pulse and negative chirped pulse, respectively. It is found that when the positive chirped pulse is used, two resonance modes can be generated, and the time evolution law of the plasmon field at different positions of the structure is analyzed. To the negative chirped pulse, the excitation sequence of the two resonant modes is opposite, so the plasmon field can be effectively manipulated. This study is of great significance for the design and optimization of plasmonic nano-devices.

References

[1]  Jiang, N.-N., Zhuo, X.-L. and Wang, J.-F. (2018) Active Plasmonics: Principles, Structures, and Applications. Chemical Reviews, 118, 3054-3099.
https://doi.org/10.1021/acs.chemrev.7b00252
[2]  Joly, A.G., El-Khoury, P.Z. and Hess, W.P. (2018) Spatiotemporal Imaging of Surface Plasmons Using Two-Color Photoemission Electron Microscopy. The Journal of Physical Chemistry C, 122, 20981-20988.
https://doi.org/10.1021/acs.jpcc.8b05849
[3]  Joly, A.G., Gong, Y., El-Khoury, P.Z. and Hess, W.P. (2018) Surface Plasmon-Based Pulse Splitter and Polarization Multiplexer. The Journal of Physical Chemistry Letters, 9, 6164-6168.
https://doi.org/10.1021/acs.jpclett.8b02643
[4]  Kim, S., Jin, J., Kim, Y.J., et al. (2008) High-Harmonic Generation by Resonant Plasmon Field Enhancement. Nature, 453, 757-760.
https://doi.org/10.1038/nature07012
[5]  Abb, M., Wang, Y.-D., De Groot, C.H. and Muskens, O.L. (2014) Hotspot-Mediated Ultrafast Nonlinear Control of Multifrequency Plasmonic Nanoantennas. Nature Communications, 5, 4869.
https://doi.org/10.1038/ncomms5869
[6]  Dombi, P., Ho?rl, A., Ra?cz, P., et al. (2013) Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles. Nano Letters, 13, 674-678.
https://doi.org/10.1021/nl304365e
[7]  Wagner, M., Fei, Z., McLeod, A.S., et al. (2014) Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump-Probe Nanoscopy. Nano Letters, 14, 894-900.
https://doi.org/10.1021/nl4042577
[8]  Fang, X., Lun, T.M., Ou, J.-Y., et al. (2014) Ultrafast All-Optical Switching via Coherent Modulation of Metamaterial Absorption. Applied Physics Letters, 104, Article ID: 141102.
https://doi.org/10.1063/1.4870635
[9]  Zhou, F., Li, Z.-Y., Liu, Y. and Xia, Y.N. (2008) Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles. The Journal of Physical Chemistry C, 112, 20233-20240.
https://doi.org/10.1021/jp807075f
[10]  Hrelescu, C., Sau, T.K., Rogach, A.L., et al. (2011) Selective Excitation of Individual Plasmonic Hotspots at the Tips of Single Gold Nanostars. Nano Letters, 11, 402-407.
https://doi.org/10.1021/nl103007m
[11]  Awada, C., Popescu, T., Douillard, L., et al. (2012) Selective Excitation of Plasmon Resonances of Single Au Triangles by Polarization-Dependent Light Excitation. The Journal of Physical Chemistry C, 116, 14591-14598.
https://doi.org/10.1021/jp303475c
[12]  Koya, A.N., Ji, B.-Y., Hao, Z.-Q. and Lin, J.Q. (2017) Coherent Control of Gap Plasmons of a Complex Nanosystem by Shaping Driving Femtosecond Pulses. Plasmonics, 12, 1693-1699.
https://doi.org/10.1007/s11468-016-0435-7
[13]  Bahar, E., Arieli, U. and Suchowski, H. (2019) Coherent Control of the Non-Instantaneous Response of Plasmonic Nanostructes. Applications and Technology, Optical Society of America, CLEO, JTu3M. 3.
https://doi.org/10.1364/CLEO_AT.2019.JTu3M.3
[14]  Song, X.-W., Ji, B.-Y., Lang, P., et al. (2018) Subwavelength Imaging and Control of Ultrafast Optical Near Field in Nanosized Bowtie and Ring. Proceedings of Ultrafast Phenomena and Nanophotonics, 22th International Society for Optics and Photonics, 10530, Article ID: 1053018.
[15]  Ichiji, N., Otake, Y. and Kubo, A. (2019) Spectral and Temporal Modulations of Femtosecond SPP Wave Packets Induced by Resonant Transmission/Reflection Interactions with Metal-Insulator-Metal Nanocavities. arXiv Preprint arXiv:1904.11750.
https://doi.org/10.1364/OE.27.022582
[16]  Triolo, C., Savasta, S., Settineri, A., et al. (2019) Near-Field Imaging of Surface-Plasmon Vortex-Modes around a Single Elliptical Nanohole in a Gold Film. Scientific Reports, 9, 5320.
https://doi.org/10.1038/s41598-019-41781-2
[17]  Stockman, M.I., Faleev, S.V. and Bergman, D.J. (2002) Coherent Control of Femtosecond Energy Localization in Nanosystems. Physical Review Letters, 88, Article ID: 067402.
https://doi.org/10.1103/PhysRevLett.88.067402
[18]  Lee, T.W. and Gray, S.K. (2005) Controlled Spatiotemporal Excitation of Metal Nanoparticles with Picosecond Optical Pulses. Physical Review B, 71, Article ID: 035423.
https://doi.org/10.1103/PhysRevB.71.035423
[19]  Harada, T., Matsuishi, K., Oishi, Y., et al. (2011) Temporal Control of Local Plasmon Distribution on Au Nanocrosses by Ultra-Broadband Femtosecond Laser Pulses and Its Application for Selective Two-Photon Excitation of Multiple Fluorophores. Optics Express, 19, 13618-13627.
https://doi.org/10.1364/OE.19.013618
[20]  Manuilovich, E.S., Astapenko, V.A. and Golovinskii, P.A. (2016) Superfocusing of an Ultrashort Plasmon Pulse by a Conducting Cone. Quantum Electronics, 46, 50.
https://doi.org/10.1070/QE2016v046n01ABEH015910
[21]  FDTD Solutions.
http://www.lumerical.com
[22]  李志远, 李家方. 金属纳米结构表面等离子体共振的调控和利用[J]. 科学通报, 2011, 56(32): 2631-2661.
[23]  张志刚. 飞秒激光技术[M]. 北京: 科学出版社, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133