|
Optoelectronics 2020
GaAs/InGaAs异质结构纳米线定向生长的研究进展
|
Abstract:
[1] | Scofield, A.C., Kim, S.-H., Shapiro, J.N., Lin, A., Liang, B., Scherer, A. and Huffaker, D.L. (2011) Bottom-Up Photonic Crystal Lasers. Nano Letters, 11, 5387-5390. https://doi.org/10.1021/nl2030163 |
[2] | Saxena, D., Mokkapati, S., Par-kinson, P., Jiang, N., Gao, Q., Tan, H.H. and Jagadish, C. (2013) Optically Pumped Room-Temperature GaAs Nanowire Lasers. Nature Photonics, 7, 963-968. https://doi.org/10.1038/nphoton.2013.303 |
[3] | Tatebayashi, J., Kako, S., Ho, J., Ota, Y., Iwamoto, S. and Arakawa, Y. (2015) Room-Temperature Lasing in a Single Nanowire with Quantum Dots. Nature Photonics, 9, 213-242. https://doi.org/10.1038/nphoton.2015.111 |
[4] | Kim, H., Lee, W.-J., Farrell, A.C., Morales, J.S.D., Senanayake, P., Prikhodko, S.V., Ochalski, T.J. and Huffaker, D.L. (2017) Monolithic InGaAs Nanowire Array Las-ers on Silicon-On-Insulator Operating at Room Temperature. Nano Letters, 17, 3465-3470. https://doi.org/10.1021/acs.nanolett.7b00384 |
[5] | Hua, B., Motohisa, J., Kobayashi, Y., Hara, S. and Fukui, T. (2009) Single GaAs/GaAsP Coaxial Core-Shell Nanowire Lasers. Nano Letters, 9, 112-116. https://doi.org/10.1021/nl802636b |
[6] | Tomioka, K., Yoshimura, M. and Fukui, T. (2012) A III-V Nanowire Channel on Silicon for High-Performance Vertical Transistors. Nature, 488, 198-192. https://doi.org/10.1038/nature11293 |
[7] | Shen, L.-F., Yip, S.P., Yang, Z.-X., Fang, M., Hung, T.F., Pun, E.Y.B. and Ho, J.C. (2015) High-Performance Wrap-Gated InGaAs Nanowire Field-Effect Transistors with Sputtered Dielectrics. Scientific Reports, 5, Article No. 16871. https://doi.org/10.1038/srep16871 |
[8] | Gu, J.J., Wang, X., Wu, H., Gordon, R.G. and Ye, P.D. (2013) Variability Improvement by Interface Passivation and EOT Scaling of InGaAs Nanowire MOSFETs. IEEE Electron Device Letters, 34, 608-610.
https://doi.org/10.1109/LED.2013.2248114 |
[9] | Tomioka, K. and Fukui, T. (2014) Current Increment of Tunnel Field-Effect Transistor Using InGaAs Nanowire/Si Heterojunction by Scaling of Channel Length. Applied Physics Letters, 104, Article ID: 073507.
https://doi.org/10.1063/1.4865921 |
[10] | Cho, H., Toprasertpong, K., Sodabanlu, H., Watanabe, K., Sugiyama, M. and Nakano, Y. (2017) Stability and Controllability of InGaAs/GaAsP Wire-on-Well (WoW) Structure for Multi-Junction Solar Cells. Journal of Crystal Growth, 464, 86-93. https://doi.org/10.1016/j.jcrysgro.2016.11.087 |
[11] | Ali, L.M. and Abed, F.A. (2017) Investigation the Absorption Efficiency of GaAs/InGaAs Nanowire Solar Cells. Optical Materials, 72, 650-653. https://doi.org/10.1016/j.optmat.2017.07.014 |
[12] | Yao, M., Huang, N., Cong, S., Chi, C.-Y., Seyedi, M.A., Lin, Y.-T., Cao, Y., Povinelli, M.L., Dapkus, P.D. and Zhou, C. (2014) GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions. Nano Letters, 14, 3293-3303.
https://doi.org/10.1021/nl500704r |
[13] | Tan, H., Fan, C., Ma, L., Zhang, X., Fan, P., Yang, Y., Hu, W., Zhou, H., Zhuang, X., Zhu, X. and Pan, A. (2016) Single-Crystalline InGaAs Nanowires for Room-Temperature High-Performance Near-Infrared Photodetectors. Nano-Micro Letters, 8, 29-35. https://doi.org/10.1007/s40820-015-0058-0 |
[14] | Wu, J., Borg, B.M., Jacobsson, D., Dick, K.A. and Wernersson, L.-E. (2013) Control of Composition and Morphology in InGaAs Nanowires Grown by Metalorganic Vapor Phase Epitaxy. Journal of Crystal Growth, 383, 158-165.
https://doi.org/10.1016/j.jcrysgro.2013.07.038 |
[15] | Mohseni, P.K., Behnam, A., Wood, J.D., English, C.D., Lyding, J.W., Pop, E. and Li, X. (2013) InxGa1?xAs Nanowire Growth on Graphene: Van der Waals Epitaxy Induced Phase Segrega-tion. Nano Letters, 13, 1153-1161.
https://doi.org/10.1021/nl304569d |
[16] | Shin, J.C., Kim, D.Y., Lee, A., Kim, H.J., Kim, J.H., Choi, W.J., Kim, H.-S. and Choi, K.J. (2013) Improving the Composition Uniformity of Au-Catalyzed InGaAs Nanowires on Silicon. Journal of Crystal Growth, 372, 15-18.
https://doi.org/10.1016/j.jcrysgro.2013.02.025 |
[17] | Kim, Y., Joyce, H.J., Gao, Q., Tan, H.H., Jagadish, C., Paladugu, M., Zou, J. and Suvorova, A.A. (2006) Influence of Nanowire Density on the Shape and Optical Properties of Ternary In-GaAs. Nano Letters, 6, 599-604.
https://doi.org/10.1021/nl052189o |
[18] | Bauer, J., Gottschalch, V. and Wagner, G. (2008) The Influence of the Droplet Composition on the Vapor-Liquid-Solid Growth of InAs Nanowire on GaAs(111)B by Metal-Organic Vapor Phase Epitaxy. Journal of Applied Physics, 104, Article ID: 114315. https://doi.org/10.1063/1.3033556 |
[19] | Gustiono, D., Wibowo, E. and Othaman, Z. (2013) Synthesis and Characterization of InGaAs Nanowires Grown by MOCVD. Journal of Physics: Conference Series, 423, Article ID: 012047.
https://doi.org/10.1088/1742-6596/423/1/012047 |
[20] | Gunawan, A.A., Jha, S. and Kuech, T.F. (2010) Growth of Size and Density Controlled GaAs/InxGa1?xAs/GaAs (x = 0.10) Nanowires on Anodic Alumina Membrane-Assisted Etching of Nanopatterned GaAs. Journal of Vacuum Science & Technology B, 28, 1111-1119. https://doi.org/10.1116/1.3498753 |
[21] | Hiruma, K., Tomioka, K., Mohan, P., Yang, L., Noborisaka, J., Hua, B., Haya-shida, A., Fujisawa, S., Hara, S., Motohisa, J. and Fukui, T. (2012) Fabrication of Axial and Radial Heterostructures for Semiconductor Nanowires by Using Selective-Area Metal-Organic Vapor-Phase Epitaxy. Journal of Nanotechnology, 2012, Article ID: 169284.
https://doi.org/10.1155/2012/169284 |
[22] | Tatebayashi, J., Kako, S., Ho, J., Ota, Y., Iwamoto, S. and Arakawa, Y. (2017) Growth of InGaAs/GaAs Nanowire-Quantum Dots on AlGaAs/GaAs Distributed Bragg Reflectors for Laser Applications. Journal of Crystal Growth, 468, 144-148. https://doi.org/10.1016/j.jcrysgro.2016.12.022 |
[23] | Lü, X.-L., Zhang, X., Liu, X.-L., Yan, X., Cui, J.-G., Li, J.-S., Huang, Y.-Q. and Ren, X.-M. (2013) Growth and Characterization of GaAs/InxGa1?xAs/GaAs Axial Nanowire Heterostructures with Symmetrical Heterointerfaces. Chinese Physics B, 22, Article ID: 066101. https://doi.org/10.1088/1674-1056/22/6/066101 |
[24] | Yan, X., Zhang, X., Ren, X., Lv, X., Li, J., Wang, Q., Cai, S. and Hang, Y. (2012) Formation Mechanism and Optical Properties of InAs Quantum Dots on the Surface of GaAs Nanowires. Nano Letters, 12, 1851-1856.
https://doi.org/10.1021/nl204204f |
[25] | Yan, X., Zhang, X., Ren, X., Li, J., Cui, J., Wang, S., Fan, S., Wang, Q. and Huang, Y. (2013) Morphological and Temperature-Dependent Optical Properties of InAs Quantum Dots on GaAs Nanowires with Different InAs Coverage. Applied Physics Letters, 103, Article ID: 172102. https://doi.org/10.1063/1.4826612 |
[26] | Ren, P., Zhu, X., Han, J., Xu, J., Ma, L., Li, H., Zhuang, X., Zhou, H., Zhang, Q., Xia, M. and Pan, A. (2014) Synthesis and Diameter-Dependent Thermal Conductivity of In As Nanowires. Nano-Micro Letters, 6, 301-306.
https://doi.org/10.1007/s40820-014-0002-8 |
[27] | Yu, Y., Li, M.-F., He, J.-F., He, Y.-M., Wei, Y.-J., He, Y., Zha, G.-W., Shang, X.-J., Wang, J., Wang, L.-J., Wang, G.-W., Ni, H.-Q., Lu, C.-Y. and Niu, Z.-C. (2013) Single InAs Quantum Dot Grown at the Junction of Branched Gold-Free GaAs Nanowire. Nano Letters, 13, 1399-1404. https://doi.org/10.1021/nl304157d |
[28] | Yuan, H., Li, L., Li, Z., Wang, Y., Qu, Y., Ma, X. and Liu, G. (2018) Axial Heterostructure of Au-Catalyzed InGaAs/GaAs Nanowires Grown by Metal-Organic Chemical Vapor Deposition. Chemical Physics Letters, 692, 28-32.
https://doi.org/10.1016/j.cplett.2017.11.061 |
[29] | 苑汇帛, 李林, 曾丽娜, 等. 金辅助催化方法制备GaAs和GaAs/InGaAs纳米线结构的形貌表征及生长机理研究[J]. 物理学报, 2018, 67(18): 188101. |