全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

GaAs/InGaAs异质结构纳米线定向生长的研究进展
Research Progress on GaAs/InGaAs Heterostructure Nanowires Directional Epitaxy Growth

DOI: 10.12677/OE.2020.101002, PP. 8-17

Keywords: 半导体,纳米线,外延生长
Semiconductor
, Nanowires, Epitaxial Growth

Full-Text   Cite this paper   Add to My Lib

Abstract:

GaAs/InGaAs异质结构纳米线具有直接带隙、载流子迁移率高等优点,在半导体激光器、场效应晶体管、太阳能电池及红外光探测器等光电子器件领域具有广阔的应用前景,受到国内外广泛关注。目前,研究机构大多数基于纳米图形的纳米线定向生长研究,但由于图形的纳米尺寸效应,导致GaAs/InGaAs柱状纳米线生长质量变差。本文介绍了GaAs/InGaAs异质结构纳米线的性能优势和发展现状,综述了GaAs/InGaAs异质结构纳米线定向外延生长及其发光特性的研究进展,讨论了其技术难题及发展前景。
Semiconductor nanowires (NWs) have potential applications in optoelectronic devices such as semiconductor lasers, nanowire-field effect transistors, solar cells and infrared photodetectors, and have consequently become a topic of intense research due to the direct bandgap and high carrier mobility of these materials. Most of the research institutions in the world study the directional growth of nanowires based on nano-patterned substrate. However, it is difficult to obtain high-quality GaAs/InGaAs heterostructure nanowires due to the nanosize patterned effects. We introduce the performance advantages and development status of the GaAs/InGaAs heterostructure nanowires. The research progress of directional epitaxy growth and luminescent properties of GaAs/InGaAs heterogeneous nanowires is reviewed, and its technical difficulties and development prospects are discussed.

References

[1]  Scofield, A.C., Kim, S.-H., Shapiro, J.N., Lin, A., Liang, B., Scherer, A. and Huffaker, D.L. (2011) Bottom-Up Photonic Crystal Lasers. Nano Letters, 11, 5387-5390.
https://doi.org/10.1021/nl2030163
[2]  Saxena, D., Mokkapati, S., Par-kinson, P., Jiang, N., Gao, Q., Tan, H.H. and Jagadish, C. (2013) Optically Pumped Room-Temperature GaAs Nanowire Lasers. Nature Photonics, 7, 963-968.
https://doi.org/10.1038/nphoton.2013.303
[3]  Tatebayashi, J., Kako, S., Ho, J., Ota, Y., Iwamoto, S. and Arakawa, Y. (2015) Room-Temperature Lasing in a Single Nanowire with Quantum Dots. Nature Photonics, 9, 213-242.
https://doi.org/10.1038/nphoton.2015.111
[4]  Kim, H., Lee, W.-J., Farrell, A.C., Morales, J.S.D., Senanayake, P., Prikhodko, S.V., Ochalski, T.J. and Huffaker, D.L. (2017) Monolithic InGaAs Nanowire Array Las-ers on Silicon-On-Insulator Operating at Room Temperature. Nano Letters, 17, 3465-3470.
https://doi.org/10.1021/acs.nanolett.7b00384
[5]  Hua, B., Motohisa, J., Kobayashi, Y., Hara, S. and Fukui, T. (2009) Single GaAs/GaAsP Coaxial Core-Shell Nanowire Lasers. Nano Letters, 9, 112-116.
https://doi.org/10.1021/nl802636b
[6]  Tomioka, K., Yoshimura, M. and Fukui, T. (2012) A III-V Nanowire Channel on Silicon for High-Performance Vertical Transistors. Nature, 488, 198-192.
https://doi.org/10.1038/nature11293
[7]  Shen, L.-F., Yip, S.P., Yang, Z.-X., Fang, M., Hung, T.F., Pun, E.Y.B. and Ho, J.C. (2015) High-Performance Wrap-Gated InGaAs Nanowire Field-Effect Transistors with Sputtered Dielectrics. Scientific Reports, 5, Article No. 16871.
https://doi.org/10.1038/srep16871
[8]  Gu, J.J., Wang, X., Wu, H., Gordon, R.G. and Ye, P.D. (2013) Variability Improvement by Interface Passivation and EOT Scaling of InGaAs Nanowire MOSFETs. IEEE Electron Device Letters, 34, 608-610.
https://doi.org/10.1109/LED.2013.2248114
[9]  Tomioka, K. and Fukui, T. (2014) Current Increment of Tunnel Field-Effect Transistor Using InGaAs Nanowire/Si Heterojunction by Scaling of Channel Length. Applied Physics Letters, 104, Article ID: 073507.
https://doi.org/10.1063/1.4865921
[10]  Cho, H., Toprasertpong, K., Sodabanlu, H., Watanabe, K., Sugiyama, M. and Nakano, Y. (2017) Stability and Controllability of InGaAs/GaAsP Wire-on-Well (WoW) Structure for Multi-Junction Solar Cells. Journal of Crystal Growth, 464, 86-93.
https://doi.org/10.1016/j.jcrysgro.2016.11.087
[11]  Ali, L.M. and Abed, F.A. (2017) Investigation the Absorption Efficiency of GaAs/InGaAs Nanowire Solar Cells. Optical Materials, 72, 650-653.
https://doi.org/10.1016/j.optmat.2017.07.014
[12]  Yao, M., Huang, N., Cong, S., Chi, C.-Y., Seyedi, M.A., Lin, Y.-T., Cao, Y., Povinelli, M.L., Dapkus, P.D. and Zhou, C. (2014) GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions. Nano Letters, 14, 3293-3303.
https://doi.org/10.1021/nl500704r
[13]  Tan, H., Fan, C., Ma, L., Zhang, X., Fan, P., Yang, Y., Hu, W., Zhou, H., Zhuang, X., Zhu, X. and Pan, A. (2016) Single-Crystalline InGaAs Nanowires for Room-Temperature High-Performance Near-Infrared Photodetectors. Nano-Micro Letters, 8, 29-35.
https://doi.org/10.1007/s40820-015-0058-0
[14]  Wu, J., Borg, B.M., Jacobsson, D., Dick, K.A. and Wernersson, L.-E. (2013) Control of Composition and Morphology in InGaAs Nanowires Grown by Metalorganic Vapor Phase Epitaxy. Journal of Crystal Growth, 383, 158-165.
https://doi.org/10.1016/j.jcrysgro.2013.07.038
[15]  Mohseni, P.K., Behnam, A., Wood, J.D., English, C.D., Lyding, J.W., Pop, E. and Li, X. (2013) InxGa1?xAs Nanowire Growth on Graphene: Van der Waals Epitaxy Induced Phase Segrega-tion. Nano Letters, 13, 1153-1161.
https://doi.org/10.1021/nl304569d
[16]  Shin, J.C., Kim, D.Y., Lee, A., Kim, H.J., Kim, J.H., Choi, W.J., Kim, H.-S. and Choi, K.J. (2013) Improving the Composition Uniformity of Au-Catalyzed InGaAs Nanowires on Silicon. Journal of Crystal Growth, 372, 15-18.
https://doi.org/10.1016/j.jcrysgro.2013.02.025
[17]  Kim, Y., Joyce, H.J., Gao, Q., Tan, H.H., Jagadish, C., Paladugu, M., Zou, J. and Suvorova, A.A. (2006) Influence of Nanowire Density on the Shape and Optical Properties of Ternary In-GaAs. Nano Letters, 6, 599-604.
https://doi.org/10.1021/nl052189o
[18]  Bauer, J., Gottschalch, V. and Wagner, G. (2008) The Influence of the Droplet Composition on the Vapor-Liquid-Solid Growth of InAs Nanowire on GaAs(111)B by Metal-Organic Vapor Phase Epitaxy. Journal of Applied Physics, 104, Article ID: 114315.
https://doi.org/10.1063/1.3033556
[19]  Gustiono, D., Wibowo, E. and Othaman, Z. (2013) Synthesis and Characterization of InGaAs Nanowires Grown by MOCVD. Journal of Physics: Conference Series, 423, Article ID: 012047.
https://doi.org/10.1088/1742-6596/423/1/012047
[20]  Gunawan, A.A., Jha, S. and Kuech, T.F. (2010) Growth of Size and Density Controlled GaAs/InxGa1?xAs/GaAs (x = 0.10) Nanowires on Anodic Alumina Membrane-Assisted Etching of Nanopatterned GaAs. Journal of Vacuum Science & Technology B, 28, 1111-1119.
https://doi.org/10.1116/1.3498753
[21]  Hiruma, K., Tomioka, K., Mohan, P., Yang, L., Noborisaka, J., Hua, B., Haya-shida, A., Fujisawa, S., Hara, S., Motohisa, J. and Fukui, T. (2012) Fabrication of Axial and Radial Heterostructures for Semiconductor Nanowires by Using Selective-Area Metal-Organic Vapor-Phase Epitaxy. Journal of Nanotechnology, 2012, Article ID: 169284.
https://doi.org/10.1155/2012/169284
[22]  Tatebayashi, J., Kako, S., Ho, J., Ota, Y., Iwamoto, S. and Arakawa, Y. (2017) Growth of InGaAs/GaAs Nanowire-Quantum Dots on AlGaAs/GaAs Distributed Bragg Reflectors for Laser Applications. Journal of Crystal Growth, 468, 144-148.
https://doi.org/10.1016/j.jcrysgro.2016.12.022
[23]  Lü, X.-L., Zhang, X., Liu, X.-L., Yan, X., Cui, J.-G., Li, J.-S., Huang, Y.-Q. and Ren, X.-M. (2013) Growth and Characterization of GaAs/InxGa1?xAs/GaAs Axial Nanowire Heterostructures with Symmetrical Heterointerfaces. Chinese Physics B, 22, Article ID: 066101.
https://doi.org/10.1088/1674-1056/22/6/066101
[24]  Yan, X., Zhang, X., Ren, X., Lv, X., Li, J., Wang, Q., Cai, S. and Hang, Y. (2012) Formation Mechanism and Optical Properties of InAs Quantum Dots on the Surface of GaAs Nanowires. Nano Letters, 12, 1851-1856.
https://doi.org/10.1021/nl204204f
[25]  Yan, X., Zhang, X., Ren, X., Li, J., Cui, J., Wang, S., Fan, S., Wang, Q. and Huang, Y. (2013) Morphological and Temperature-Dependent Optical Properties of InAs Quantum Dots on GaAs Nanowires with Different InAs Coverage. Applied Physics Letters, 103, Article ID: 172102.
https://doi.org/10.1063/1.4826612
[26]  Ren, P., Zhu, X., Han, J., Xu, J., Ma, L., Li, H., Zhuang, X., Zhou, H., Zhang, Q., Xia, M. and Pan, A. (2014) Synthesis and Diameter-Dependent Thermal Conductivity of In As Nanowires. Nano-Micro Letters, 6, 301-306.
https://doi.org/10.1007/s40820-014-0002-8
[27]  Yu, Y., Li, M.-F., He, J.-F., He, Y.-M., Wei, Y.-J., He, Y., Zha, G.-W., Shang, X.-J., Wang, J., Wang, L.-J., Wang, G.-W., Ni, H.-Q., Lu, C.-Y. and Niu, Z.-C. (2013) Single InAs Quantum Dot Grown at the Junction of Branched Gold-Free GaAs Nanowire. Nano Letters, 13, 1399-1404.
https://doi.org/10.1021/nl304157d
[28]  Yuan, H., Li, L., Li, Z., Wang, Y., Qu, Y., Ma, X. and Liu, G. (2018) Axial Heterostructure of Au-Catalyzed InGaAs/GaAs Nanowires Grown by Metal-Organic Chemical Vapor Deposition. Chemical Physics Letters, 692, 28-32.
https://doi.org/10.1016/j.cplett.2017.11.061
[29]  苑汇帛, 李林, 曾丽娜, 等. 金辅助催化方法制备GaAs和GaAs/InGaAs纳米线结构的形貌表征及生长机理研究[J]. 物理学报, 2018, 67(18): 188101.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133