We discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize that we do not try to modify standard ADS/CFT procedures, but use them to evaluate the corresponding Feynman and Wheeler propagators. Our present calculations are original in the sense of being the first ones undertaken explicitly using distributions theory (DT). They are carried out in two instances: 1) when the boundary is a Euclidean space and 2) when it is of Minkowskian nature. In this last case we compute also three propagators: Feynman’s, Anti-Feynman’s, and Wheeler’s (half advanced plus half retarded). For an operator corresponding to a scalar field we explicitly obtain, for the first time ever, the two points’ correlations functions in the three instances above mentioned. To repeat, it is not our intention here to improve on ADS/CFT theory but only to employ it for evaluating the corresponding Wheeler’s propagators.
References
[1]
Maldacena, J.M. (1998) Advances in Theoretical and Mathematical Physics, 2, 231-252. https://doi.org/10.4310/ATMP.1998.v2.n2.a1
[2]
Witten, E. (1998) Advances in Theoretical and Mathematical Physics, 2, 253-291. https://doi.org/10.4310/ATMP.1998.v2.n2.a2
Danielsson, U.H., Keski-Vakkuri, E. and Kruczenski, M. (1999) Journal of High Energy Physics, 9901, 002. https://doi.org/10.1088/1126-6708/1999/01/002
[5]
Ryang, S. (1999) Physics Letters B, 469, 87-95. https://doi.org/10.1016/S0370-2693(99)01260-5
[6]
Klebanov, I.R. and Witten, E. (1999) Nuclear Physics B, 556, 89-114. https://doi.org/10.1016/S0550-3213(99)00387-9
[7]
Minces, P. and Rivelles, V.O. (2000) Nuclear Physics B, 572, 651-669. https://doi.org/10.1016/S0550-3213(99)00833-0
[8]
Mueck, W. (1999) Studies on the adS/CFT Correspondence. PhD Thesis, Simon Fraser University, Burnaby. http://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape9/PQDD_0025/NQ51904.pdf
[9]
Mueck, W. and Viswanathan, K.S. (1998) Physical Review D, 58, 041901(R). https://doi.org/10.1103/PhysRevD.58.041901
[10]
Jepsen, C.B. and Parikh, S. (2019) Journal of High Energy Physics, 2019, 268.
[11]
Prudenziati, A. (2019) Journal of High Energy Physics, 2019, Article No. 59. https://doi.org/10.1007/JHEP06(2019)059
[12]
Parikh, M. and Samantray, P. (2018) Journal of High Energy Physics, 2018, Article No. 129. https://doi.org/10.1007/JHEP10(2018)129
[13]
Erbin, H. (2014) Scalar Propagators on adS Space. https://www.lpthe.jussieu.fr/erbin/files/ads_propagators.pdf
[14]
Balasubramanian, V., Kraus, P., Lawrence, A. and Trivedi, S.P. (1999) Physical Review D, 59, Article ID: 104021. https://doi.org/10.1103/PhysRevD.59.104021
[15]
Balasubramanian, V., Giddings, S.B. and Lawrence, A. (1999) Journal of High Energy Physics, 9903, 001. https://doi.org/10.1088/1126-6708/1999/03/001
[16]
Balasubramanian, V., Kraus, P. and Lawrence, A. (1999) Physical Review D, 59, Article ID: 046003. https://doi.org/10.1103/PhysRevD.59.046003
[17]
Wheeler, J.A. and Feynman, R.P. (1945) Reviews of Modern Physics, 17, 157-181. https://doi.org/10.1103/RevModPhys.17.157
[18]
Dirac, P.A.M. (1938) Proceedings of the Royal Society of London. Series A, 167, 148-169. https://doi.org/10.1098/rspa.1938.0124
[19]
Wheeler, J.A. and Feynman, R.P. (1949) Reviews of Modern Physics, 21, 425-433. https://doi.org/10.1103/RevModPhys.21.425
[20]
Barci, D.G., Bollini, C.G. and Rocca, M.C. (1993) Il Nuovo Cimento, 106, 603-609. https://doi.org/10.1007/BF02787229 Barci, D.G., Bollini, C.G. and Rocca, M.C. (1994) International Journal of Modern Physics A, 9, 3497-3502. https://doi.org/10.1142/S0217751X94001382
[21]
Bollini, C.G. and Oxman, L.E. (1992) International Journal of Modern Physics A, 7, 6845-6855. https://doi.org/10.1142/S0217751X92003148
[22]
Son, D.T. and Starinets, A.O. (2002) Journal of High Energy Physics, 9, 042. https://doi.org/10.1088/1126-6708/2002/09/042
[23]
Freedman, D.Z., Mathur, S.D., Matusis, A. and Rastelli, L. (1999) Nuclear Physics B, 546, 96. https://doi.org/10.1016/S0550-3213(99)00053-X
[24]
Schwartz, L. (1966) Théorie des distributions. Hermann, Paris.