In the previous paper (JMP 2014) we showed that there exists a NeoMinkowskian Gravitational Expanding Solution of GR (General Relativity) with CC (Cosmological Constant). We prove now that NeoMinkowskian Vacuum (non-baryonic Fluid), with gravitational (first) density (dark energy) and gravitational waves (at light speed), corresponds to the Gravitation Field of a Cosmological Black Hole (CBH). The latter predicts furthermore a basic emission of Radiation (CBR) from Hubble spherical singular Horizon to the inside of CBH (unlike Hawking’s emission) at an initial singular time. Our solution is then compatible with a well-tempered Big Bang and Expanding Universe (Escher’s Figure, see Penrose, 3) but incompatible with inflation. The latter is based on Hypothesis of a so-called Planck’s particle (Lemaitre’s primitive atom) characterized by a so-called Planck length. We prove that we can short-circuit this unstable particle with a stable cosmological Poincaré’s electron with gravific pressure. It is well known that electron is a stranger in usual Minkowskian vacuum (dixit Einstein). The stranger electron can be perfectly integrated in NeoMinkowskian Radiation fluid and then also (with its mass, charge and wavelength) in (second density of) CBR. Everything happens as if the leptonic mass of the electron were induced by our cosmological field. The unexpected cosmological model proposed here is the only one that predicts numerical values of (second) density and temperature of CBR very close to the observed (COBE) values.
References
[1]
Pierseaux, Y. (2014) Journal of Modern Physics, 5, 1725-1732. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51072
[2]
Pierseaux, Y. (2013) Annales de la Fondation Louis de Broglie, 38, 41-55. http://aflb.ensmp.fr/AFLB-381/aflb381m761.pdf
[3]
Riess, A., et al. (1998) Astronomical Journal, 116, 1009-1038. https://doi.org/10.1086/300499
[4]
Poincaré, H. (1905) Compte Rendus de l’Academie des Sciences de Paris, 140, 1504-1508.
[5]
Tatum, E.T. (2019) Journal of Modern Physics, 10, 1083-1089. https://doi.org/10.4236/jmp.2019.109070
[6]
Feinberg, G. (1967) Physical Review, 159, 1089-1105. https://doi.org/10.1103/PhysRev.159.1089
[7]
Hawking, S. (1988) A Brief History of Time. Bantam Books, Toronto.
[8]
Unruh, W.G. (2018) Can the Fluctuations of the Quantum Vacuum Solve the Cosmological Constant Problem? https://arxiv.org/abs/1805.12293
[9]
Borel, E. (1913) La théorie de la Relativité et la Cinématique, C.R. Acad. Sci. Paris,
[10]
Barrett, J.F. (1993) Lobatchevski, Varicak and Hubble Redshift. European Mathematical Newsletters, March 1993.
[11]
Penrose, R. (1997) The Large, the Small and the Human Mind. Cambridge University Press, Cambridge.
[12]
Rindler, W. (2001) Relativity. Special, General and Cosmological. Oxford University Press, Oxford.
[13]
Pauli, W. (1921) Theory of Relativity. Dover Publications, New York, 1958.
[14]
Milgrom, M. (2008) The MOND Paradigme.
[15]
Bondi, H. (1962) Relativity and Common Sense. A New Approach to Einstein. Dover Publications Inc., New York.
[16]
Pierseaux, Y. (2019) Annales de la Fondation Louis de Broglie, 43, 135-175. http://aflb.ensmp.fr/AFLB-432/aflb432m879.pdf
[17]
Landau, L. (1970) Théorie des Champs (avec E. Lifschitz). Editions MIR, Moscou.
[18]
Einstein, A. (1905) Annalen der Physik, 17, 891-921. https://doi.org/10.1002/andp.19053221004
[19]
Pierseaux, Y. (2000) La “Structure Fine” de la Relativit? Restreinte, L’Harmattan, 1999.
[20]
Pierseaux, Y. (2007) L’ellipse de Poincaré, Comptes Rendus Physique, 8, 921-928. http://www.sciencedirect.com/science/article/pii/S1631070507001326 https://doi.org/10.1016/j.crhy.2007.06.002
[21]
Reignier, J. (2002) Faut-il croire les cosmologistes? Prof. Em. ULB-VUB.