全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electroless Plating of Palladium Membranes on Porous Substrates for Hydrogen Separation and the Effects of Process Factors on Plating Rate and Efficiency: A Review

DOI: 10.4236/jpee.2020.82001, PP. 1-19

Keywords: Electroless Plating, Hydrogen, Palladium Membranes, Plating Efficiency, Process Factors

Full-Text   Cite this paper   Add to My Lib

Abstract:

The electroless plating of palladium and palladium alloy membranes is fast becoming an important and enabling technology. This is more so when juxtaposed with the rising demand for high purity hydrogen for applications particularly in proton exchange membrane fuel cells (PEMFC). The effect of process factors such as sensitization and activation during surface modification, concentration of the reducing agent, plating temperature, time, pH, additives, air aeration on plating efficiency, quality of the palladium film and deposit morphology is reviewed with the aim of identifying areas requiring further investigation. The paper also reviews how these process factors could be optimised for better plating efficiency and overall membrane quality. The concentration of the reducing agent has been identified as the limiting factor on plating efficiency albeit other process factors separately impact on the plating efficiency. Furthermore, bulk precipitation caused by concentration of the reducing agent has been identified as a major problem during electroless plating with hydrazine based plating baths. To ameliorate this problem, a multi step addition of the hydrazine reducer in separate portions has been recommended.

References

[1]  Schlesinger, M. and Paunovic, M. (2010) Modern Electroless Plating. Chapter 18, Wiley and sons, Inc., New York, 447-458.
https://doi.org/10.1002/9780470602638.ch18
[2]  Yun, S. and Oyama, T.S. (2011) Correlations in Palladium Membranes for Hydrogen Separation: A Review. Journal of Membrane Science, 375, 28-48.
https://doi.org/10.1016/j.memsci.2011.03.057
[3]  Gobina, E. and Hughes, R. (1996) Reaction Assisted Hydrogen Transport during Catalytic Dehydrogenation in a Membrane Reactor. Applied Catalysis, 137, 119-127.
https://doi.org/10.1016/0926-860X(95)00312-6
[4]  Dittmeyer, R., Hollein, V. and Daub, K. (2001) Membrane Reactors for Hydrogenation and Dehydrogenation Processes Based on Supported Palladium. Journal of Molecular Catalysis, 173, 135-184.
https://doi.org/10.1016/S1381-1169(01)00149-2
[5]  Wang, L., Yoshiie, R. and Uemiya, S. (2007) Fabrication of Novel Pd-Ag-Ru/Al2O3 Ternary Alloy Composite Membrane with Remarkably Enhanced Hydrogen Permeability. Journal of Membrane Science, 306, 1-7.
https://doi.org/10.1016/j.memsci.2007.08.057
[6]  Balat, M. (2008) Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems. International Journal of Hydrogen Energy, 33, 4013-4029.
https://doi.org/10.1016/j.ijhydene.2008.05.047
[7]  Li, A., Xiong, G., Gu, J. and Zheng, L. (1996) Preparation of Pd/Ceramic Composite Membrane 1. Improvement of the Conventional Preparation Technique. Journal of Membrane Science, 110, 257-260.
https://doi.org/10.1016/0376-7388(95)00249-9
[8]  Chee, C. and Gobina, E. (2010) Ultra-Thin Palladium Technologies Enable Future Commercial Deployment of PEM Fuel Cell Systems. Membrane Technology, 2010, 6-13.
https://doi.org/10.1016/S0958-2118(10)70054-9
[9]  David, E. and Kopac, J. (2010) Development of Palladium/Ceramic Membranes for Hydrogen Separation. International Journal of Hydrogen Energy, 36, 4498-4506.
https://doi.org/10.1016/j.ijhydene.2010.12.032
[10]  Basko, M.L., Lombardo, E.A. and Cornaglia, L.M. (2011) The Effect of Electroless Plating Time on the Morphology, Alloy Formation and H2 Transport Properties of Pd-Ag Composite Membranes. International Journal of Hydrogen Energy, 36, 4068-4078.
https://doi.org/10.1016/j.ijhydene.2010.12.056
[11]  Bulasara, K.V., Thakuria, H., Uppaluri, R. and Purkait, K.M (2011) Effect of Process Parameters on Electroless Plating and Nickel-Ceramic Membrane Characteristics. Desalination, 268, 195-203.
https://doi.org/10.1016/j.desal.2010.10.025
[12]  Pandey, P. and Chauhan, R.S. (2001) Membranes for Gas Separation. Progress in Polymer Science, 26, 853-893.
https://doi.org/10.1016/S0079-6700(01)00009-0
[13]  Ryi, S.-K., Xu, N., Li, A., Lim, J.C. and Grace, J.R. (2010) Electroless Pd Membrane Deposition on Alumina Modified Porous Hastleloy Substrate with EDTA—Free Bath. International Journal of Hydrogen Energy, 35, 2328-2335.
https://doi.org/10.1016/j.ijhydene.2010.01.054
[14]  Balamurali, K.R.N., Choi, J. and Harold, P.M. (2007) Electroless Plating and Permeation Features of Pd and Pd/Ag Hollow Fiber Composite Membranes. Journal of Membrane Science, 288, 67-84.
https://doi.org/10.1016/j.memsci.2006.11.006
[15]  Yeung, K.L., Christianiansen, S. and Varma, A. (1999) Palladium Composite Membranes by Electroless Plating Technique: Relationship between Plating Kinetics, Film Microstructure and Membrane Performance. Journal of Membrane Science, 159, 107-122.
https://doi.org/10.1016/S0376-7388(99)00041-1
[16]  Cheng, Y.S., Pena, M.A., Fierro, J.L., Hui, D.C.W. and Yeung, K.L. (2002) Performance of Alumina, Zeolite, Palladium, Pd-Ag Alloy Membranes for Hydrogen Separation from Towngas Mixture. Journal of Membrane Science, 204, 329-340.
https://doi.org/10.1016/S0376-7388(02)00059-5
[17]  Khoperia, T.N. (2003) Investigation of the Substrate Activation Mechanism and Electroless Ni-P Coating Ductility and Adhesion. Microelectronic Engineering, 69, 391-398.
https://doi.org/10.1016/S0167-9317(03)00326-5
[18]  Zhao, H.-B., Pflanz, K., Gu, J.-H., Li, A.-W., Stroh, N., Brunner, H. and Xiong, G.-X. (1998) Preparation of Palladium Composite Membranes by Modified Electroless Plating Procedure. Journal of Membrane Science, 142, 147-157.
https://doi.org/10.1016/S0376-7388(97)00287-1
[19]  Zhang, X., Xiong, G. and Yang, W. (2008) A Modified Electroless Plating Technique for Thin Dense Palladium Composite Membranes with Enhanced Stability. Journal of Membrane Science, 314, 226-237.
https://doi.org/10.1016/j.memsci.2008.01.051
[20]  Xu, L.N., Liao, J.H., Huang, L., Ou, D.L., Zhou, K.C., Zhang, H.Q., Gu, N. and Liu, J.Z. (2002) A New Activation Method for Electroless Metal Plating: Palladium Laden via Bonding with Self-Assembly Monolayers. Chinese Chemical Letters, 13, 687-688.
[21]  Hannah, F., Abdel Hamid, Z. and Abdel Aal, A. (2003) Controlling Factors Affecting the Stability and Rate of Electroless Copper Plating. Materials Letters, 58, 104-109.
https://doi.org/10.1016/S0167-577X(03)00424-5
[22]  Okinaki, Y. and Kato, M. (2010) Electroless Deposition of Gold. In: Modern Electroless Plating, Fifth Edition, Chapter 21, John Wiley and Sons, New York, 483-498.
https://doi.org/10.1002/9780470602638.ch21
[23]  Collins, J.P. and Way, D. (1993) Preparation and Characterisation of a Composite Palladium-Ceramic Membrane. Industrial & Engineering Chemistry Research, 32, 3006-3013.
https://doi.org/10.1021/ie00024a008
[24]  Cheng, Y.S. and Yeung, K.L. (1999) Palladium-Silver Composite Membranes for Electroless Plating Technique. Journal of Membrane Science, 158, 127-141.
https://doi.org/10.1016/S0376-7388(99)00009-5
[25]  Nair, R.K.B., Choi, J. and Harold, P.M. (2007) Electroless Plating and Permeation Features of Pd and Pd/Ag Hollow Fibre Composite Membranes. Journal of Membrane Science, 288, 67-84.
https://doi.org/10.1016/j.memsci.2006.11.006
[26]  Anik, T., Touhami, E.M., Himm, K., Schireen, S., Belkhmima, R.A, Abouchane, M. and Cisse, M. (2012) Influence of pH Solution on Electroless Copper Plating Using Sodium Hypophosphite as Reducing Agent. International Journal of Electrochemical Science, 7, 2009-2018.
[27]  Ayturk, M.E. and Ma, Y.H. (2009) Electroless Pd and Ag Deposition Kinetics of the Composite Pd and Pd/Ag Membranes Synthesised from Agitated Plating Baths. Journal of Membrane Science, 330, 233-245.
https://doi.org/10.1016/j.memsci.2008.12.062
[28]  Roa, F. and Way, J.D. (2005) The Effect of Air Exposure on Palladium-Copper Composite Membranes. Applied Surface Science, 240, 85-104.
https://doi.org/10.1016/j.apsusc.2004.06.023
[29]  Kitiwan, M. and Atong, D. (2009) Effects of Porous Alumina Support and Plating Time on Electroless Plating of Palladium Membranes. Journal of Material Science Technology, 26, 1148-1152.
https://doi.org/10.1016/S1005-0302(11)60016-9
[30]  Volpe, M., Inguanta, R., Piazza, S. and Sunseri, C. (2006) Optimized Bath for Electroless Deposition of Palladium on Amorphous Alumina Membranes. Surface and Coatings Technology, 200, 5800-5806.
https://doi.org/10.1016/j.surfcoat.2005.08.126
[31]  Zeng, G., Shi, L., Liu, Y., Zhang, Y. and Sun, Y. (2014) A Simple Approach to Uniform Pd/Ag Alloy Membranes: Comparative Study of Conventional and Silver Concentration—Controlled Co-Plating. International Journal of Hydrogen Energy, 39, 4427-4436.
[32]  Braun, F., Tarditi, M.A. and Cornaglia, L.M. (2011) Optimisation and Characterisation of Electroless Codeposited PdRu Membranes: Effect of the Plating Variables on Morphology. Journal of Membrane Science, 382, 252-261.
https://doi.org/10.1016/j.memsci.2011.08.019
[33]  Yang, Z., Wang, Z., Wang, X. and Wang, Z. (2011) Comparison of Bottom-up Filling in Electroless Plating with an Addition of PEG, PPG and EPE. Chinese Journal of Chemistry, 29, 422-426.
https://doi.org/10.1002/cjoc.201190098
[34]  Pizzi, D., Worth, R., Baschetti, M.G., Sarti, G.C. and Noda, K. (2008) Hydrogen Permeability of 2.5 um Palladium-Silver Membranes Deposited on Ceramic Supports. Journal of Membrane Science, 325, 446-453.
https://doi.org/10.1016/j.memsci.2008.08.020
[35]  Chen, H.-I., Chu, C.-Y. and Huang, T.-C. (2004) Characterization of PdAg/Al2O3 Composite Membrane by Electroless Codeposition. Thin Solid Films, 460, 62-71.
https://doi.org/10.1016/j.tsf.2004.01.106

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133