Thermodynamic Study and Spectroscopic Analysis of a Charge-Transfer Complex between 3,5-Diamino-1,2,4-Triazole and 6-Methyl-1,3,5-Triazine-2,4-Diamine with Chloranilic Acid
Studying of charge-transfer (CT)
and proton transfer interactions is essential due to their important role in
many biological field and industrial applications. The current work will add
more information’s about the nature of interaction between
3,5-diamino-1,2,4-triazole (DAT) and 6-methyl-1,3,5-triazine-2,4-diamine (MTDA) with 3,6-dichloro-2,5-dihydroxy-p-benzoquinone (chloranilic acid CLA)
which was studied spectrophotometrically in Ethanol (EtOH) and Methanol (MeOH)
solvents at different temperatures. The molecular composition of the formed
complexes was studied by applying continuous variation and spectrophotometric
titration methods and found to be 1:1 charge transfer complex for both Complex
(DAT:CLA) and (MTDA:CLA) which are produced. Minimum-Maximum
absorbance’s method has been applied to calculate the formation constant KCT and molecular
extinction coefficient (ε); they recorded
high values confirming high stability of the produced complexes. Oscillator
strength (f), transition dipole moment (μ),
ionization potential (IP)
and dissociation energy (W) of the formed CT-complexes were also
determined and evaluated
References
[1]
Kratochvílová, I., Vala, M., Weiter, M., Spérová, M., Schneider, B., Páv, O., Sychrovsky, V., et al. (2013) Charge Transfer through DNA/DNA Duplexes and DNA/RNA Hybrids: Complex Theoretical and Experimental Studies. Biophysical Chemistry, 180, 127-134. https://www.deepdyve.com/lp/elsevier/charge-transfer-through-dna-dna-duplexes-and- dna-rna-hybrids-complex-hTrAAJ4pKm https://doi.org/10.1016/j.bpc.2013.07.009
[2]
Gaballa, A.S. and Amin, A.S. (2015) Preparation, Spectroscopic and Antibacterial Studies on Charge-Transfer Complexes of 2-Hydroxypyridine with Picric Acid and 7,7’,8,8’-Tetracyano-p-Quinodimethane. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 302-312. https://www.sciencedirect.com/science/article/abs/pii/S1386142515003017 https://doi.org/10.1016/j.saa.2015.03.005
[3]
Eldaroti, H.H., Gadir, S.A., Refat, M.S. and Adam, A.M.A. (2014) Charge-Transfer Interaction of Drug Quinidine with Quinol, Picric Acid and DDQ: Spectroscopic Characterization and Biological Activity Studies towards Understanding the Drug-Receptor Mechanism. Journal of Pharmaceutical Analysis, 4, 81-95. https://www.sciencedirect.com/science/article/pii/S2095177913000683 https://doi.org/10.1016/j.jpha.2013.06.003
[4]
Al-Ahmary, K.M., El-Kholy, M.M., Al-Solmy, I.A. and Habeeb, M.M. (2013) Spectroscopic Studies and Molecular Orbital Calculations on the Charge Transfer Reaction between DDQ and 2-Aminopyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 110, 343-350. https://www.sciencedirect.com/science/article/abs/pii/S138614251300276X https://doi.org/10.1016/j.saa.2013.03.055
[5]
Bai, H., Wang, Y., Cheng, P., Li, Y., Zhu, D. and Zhan, X. (2014) Acceptor-Donor-Acceptor Small Molecules Based on Indacenodithiophene for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 6, 8426-8433. https://pubs.acs.org/doi/abs/10.1021/am501316y https://doi.org/10.1021/am501316y
[6]
Al-Ahmary, K.M., Habeeb, M.M. and Al-Solmy, E.A. (2011) Spectroscopic Studies of the Hydrogen Bonded Charge Transfer Complex of 2-Aminopyridine with π-Acceptor Chloranilic Acid in Different Polar Solvents. Journal of Molecular Liquids, 162, 129-134. https://pubs.acs.org/doi/abs/10.1021/am501316y https://doi.org/10.1016/j.molliq.2011.06.015
[7]
Chetia, M., Gehlot, P.S., Kumar, A. and Sarma, D. (2018) A Recyclable/Reusable Hydrotalcite Supported Copper Nano Catalyst for 1, 4-Disubstituted-1, 2, 3-Triazole Synthesis via Click Chemistry Approach. Tetrahedron Letters, 59, 397-401. https://www.sciencedirect.com/science/article/pii/S0040403917315575 https://doi.org/10.1016/j.tetlet.2017.12.051
[8]
Cascioferro, S., Parrino, B., Spanò, V., Carbone, A., Montalbano, A., Barraja, P., Cirrincione, G., et al. (2017) 1,3,5-Triazines: A Promising Scaffold for Anticancer Drugs Development. European Journal of Medicinal Chemistry, 142, 523-549. https://www.sciencedirect.com/science/article/pii/S0223523417307493 https://doi.org/10.1016/j.ejmech.2017.09.035
[9]
Cascioferro, S., Parrino, B., Spano, V., Carbone, A., Montalbano, A., Barraja, P., Cirrincione, G., et al. (2017) An Overview on the Recent Developments of 1,2,4-Triazine Derivatives as Anticancer Compounds. European Journal of Medicinal Chemistry, 142, 328-375. https://www.sciencedirect.com/science/article/pii/S0223523417306128 https://doi.org/10.1016/j.ejmech.2017.08.009
[10]
Job, P. (1928) Formation and Stability of Inorganic Complexes in Solution. Annali di Chimica Applicata, 9, 133-203. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1156687
[11]
Al-Ahmary, K.M. (2014) Spectroscopic Characterization of Charge Transfer Complexes of 2,3-Diaminopyridine with Chloranilic Acid and Dihydroxy-p-Benzoquinone in Polar Solvent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 635-644. https://www.sciencedirect.com/science/article/abs/pii/S1386142513010159 https://doi.org/10.1016/j.saa.2013.09.008
[12]
Voigt, E.M. and Reid, C. (1964) Ionization Potentials of Substituted Benzenes and Their Charge-Transfer Spectra with Tetracyanoethylene. Journal of the American Chemical Society, 86, 3930-3934. https://pubs.acs.org/doi/pdf/10.1021/ja01073a005 https://doi.org/10.1021/ja01073a005
Aloisi, G.G. and Pignataro, S. (1973) Molecular Complexes of Substituted Thiophens with σ and π Acceptors. Charge Transfer Spectra and Ionization Potentials of the Donors. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 69, 534-539. https://pubs.rsc.org/en/content/articlelanding/1973/f1/f19736900534/unauth#!divAbstract https://doi.org/10.1039/f19736900534
[15]
Briegleb, G. and Czekalla, J. (1960) Intensity of Electron Transition Bands in Electron Donator-Acceptor Complexes. Zeitschrift für physikalische Chemie (Frankfurt), 24, 37-54. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=419520
[16]
Gliemann, G. (1985) ABP Lever: Inorganic Electronic Spectroscopy, Vol. 33 aus: Studies in Physical and Theoretical Chemistry, Elsevier, Amsterdam, Oxford, New York, Tokio 1984. 863 Seiten, Preis: $113, 50. Berichte der Bunsengesellschaft für physikalische Chemie, 89, 99-100. https://onlinelibrary.wiley.com/doi/abs/10.1002/bbpc.19850890122 https://doi.org/10.1002/bbpc.19850890122
[17]
Rathore, R., Lindeman, S.V. and Kochi, J.K. (1997) Charge-Transfer Probes for Molecular Recognition via Steric Hindrance in Donor-Acceptor Pairs. Journal of the American Chemical Society, 119, 9393-9404. https://pubs.acs.org/doi/abs/10.1021/ja9720319 https://doi.org/10.1021/ja9720319
[18]
McConnell, H., Ham, J.S. and Platt, J.R. (1953) Regularities in the Spectra of Molecular Complexes. The Journal of Chemical Physics, 21, 66-70. https://aip.scitation.org/doi/abs/10.1063/1.1698626 https://doi.org/10.1063/1.1698626
[19]
Irving, H.M.N.H., Freiser, H. and West, T.S. (2017) Compendium of Analytical Nomenclature: Definitive Rules 1977. Elsevier, Amsterdam. https://books.google.com.sa/books?hl=ar&lr=&id=Zmf9BAAAQBAJ&oi=fnd&pg=PP1&dq= Irving,+H.+M.+N.+H.,+Freiser,+H.,+%26+West,+T.+S.+(1981)+IUPAC+compendium+of+ analytical+nomenclature,+definitive+rules,+Pergamon+Press,+Oxford.&ots= K9eMVvJWww&sig=psoYjzGGEtu1Qswx0edqmbRRo5E&redir_esc=y#v=onepage&q&f=false
[20]
Miller, J.C. and Miller, N.A. (2005) Statistics for Analytical Chemistry. 5th Edition, Ellis Horwood Ltd., London. https://www.amazon.com/Statistics-Chemometrics-Analytical-Chemistry-5th/dp/0131291920/ ref=sr_1_fkmr0_1?keywords=.+Statistics+for+Analytical+Chemistry%2C+5th+ed.+Ellis+ Horwood+Ltd.%2C+England.&qid=1575104547&sr=8-1-fkmr0